-
自从约翰·霍普菲尔德在1982年提出Hopfield神经网络模型[1]以来,其理论在信号与图像处理、联想记忆及组合优化等问题中有着重要的应用[2-3],得到了许多有关Hopfield神经网络稳定性或者同步的结论[4-5].然而,在过去的一些关于Hopfield神经网络稳定性或者同步的文章中,系统是在无限时间内实现稳定或者同步[6-8].
在神经网络系统中出于高效的目的,需要神经网络系统在有限的时间内实现稳定或者同步,如在工程领域等.自从文献[9]在1991年提出神经网络在有限时间内稳定的理论以来,许多研究者对神经网络在有限时间内的稳定性问题或者同步问题广泛研究,得到了很多有效的理论[10-12].在神经网络系统实现稳定或同步的过程中,由于信号在不同的神经元之间传递的速度是有限的,出现了影响系统稳定或者同步的常见因素时滞.除了时滞对神经网络系统的影响之外,来自系统之外的噪声对系统的稳定性或者同步也有影响,为此在神经网络系统中需要考虑随机扰动对系统的影响[13].在理论研究和工程领域中,相对于一阶神经网络模型,高阶神经网络在网络收敛速度、容错能力、储存水平、逼近能力都具有较强的功能[14].然而对于高阶随机Hopfield神经网络在有限时间内的同步问题研究得较少.
受此启发,本文研究了具有变时滞的高阶随机Hopfield神经网络在有限时间内的控制同步,在恰当的外部控制输入Ui(t)下,得到了神经网络在有限时间内同步的充分条件.
Finite-Time Control Synchronization for High-Order Stochastic Hopfield Neural Networks with Time-Varying Delays
-
摘要: 研究了具有变时滞的高阶随机Hopfield神经网络在有限时间内的控制同步.通过李雅普诺夫函数,有限时间内稳定性理论,随机微分方程理论和一些不等式方法,基于p-范数得到了新的有限时间内同步的充分条件.本文结论是对之前相关结论的推广.
-
关键词:
- 高阶Hopfield神经网络 /
- 随机扰动项 /
- 变时滞 /
- 有限时间内同步 /
- p-范数
Abstract: In this paper, we study the finite-time control synchronization for high-order stochastic Hopfield neural networks with time-varying delays. Through the Lyapunov function, the finite time stability theory, the theory of stochastic differential equation and some inequality methods, some new and useful sufficient conditions on the in finite-time synchronization are obtained based on p-norm. The conclusion of this paper is the generalization of the previous related conclusions. -
[1] HOPFIELD J J. Neural Networks and Physical Systems with Emergent Collective Computational Abilities[J]. Proc Natl Acad Sci, 1982, 79(8):2554-2558. doi: 10.1073/pnas.79.8.2554 [2] PAJARES G, GUIJARRO M, RIBEIRO A. A Hopfield Neural Network for Combining Classifiers Applied to Textured Images[J]. Neural Networks, 2010, 23(1):144-153. doi: 10.1016/j.neunet.2009.07.019 [3] LIU D R. Cloning Template Design of Cellular Neural Networks for Associative Memories[J]. IEEE Transactions on Circuits and Systems Ⅰ:Fundamental Theory and Applications, 1997, 44(7):646-650. doi: 10.1109/81.596948 [4] LIU B, LU W L, CHEN T P. Neural Networks Letter:Global Almost Sure Self-Synchronization of Hopfield Neural Networks with Randomly Switching Connections[J]. Neural Networks, 2011, 24(3):305-310. doi: 10.1016/j.neunet.2010.12.005 [5] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0d70fa88e9dd9c5bbcf4bc734aff3256 CAI G L, SHAO H J, YAO Q. A Linear Matrix Inequality Approach to Global Synchronization of Multi-Delay Hopfield Neural Networks with Parameter Perturbations[J]. Chinese Journal of Physics, 2012, 50(1):50-63. [6] YU J, HU C, JIANG H J, et al. Exponential Synchronization of Cohen-Grossberg Neural Networks via Periodically Intermittent Control[J]. Neurocomputing 2011, 74(10):1776-1782. doi: 10.1016/j.neucom.2011.02.015 [7] GAN Q T, XU R, YANG P H. Exponential Synchronization of Stochastic Fuzzy Cellular Neural Networks with Time Delay in the Leakage Term and Reaction-Diffusion[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(4):1862-1870. doi: 10.1016/j.cnsns.2011.08.029 [8] ZHANG W B, TANG Y, FAN J A, et al. Neural Networks Letter:Stability of Delayed Neural Networks with Time-Varying Impulses[J]. Neural Networks, 2012, 36:59-63. doi: 10.1016/j.neunet.2012.08.014 [9] RYAN E P. Finite-Time Stabilization of Uncertain Nonlinear Planar Systems[J]. Dynamics and Control, 1991, 1(1):83-94. doi: 10.1007/BF02169426 [10] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=32f1bd09684bc9ec024a869d9ee925e2 HUANG J J, LI C D, HUANG T W, et al. Finite-Time Lag Synchronization of Delayed Neural Networks[J]. Neurocomputing, 2014, 139(13):145-149. [11] WANG Y J, SHI X M, ZUO Z Q, et al. On Finite-Time Stability for Nonlinear Impulsive Switched Systems[J]. Nonlinear Analysis:Real World Applications, 2013, 14(1):807-814. doi: 10.1016/j.nonrwa.2012.08.003 [12] HU C, YU J, JIANG H J. Finite-Gime Synchronization of Delayed Neural Networks with Cohen-Grossberg Type Based on Delayed Feedback Control[J]. Neurocomputing, 2014, 143:90-96. doi: 10.1016/j.neucom.2014.06.016 [13] DU Y H, ZHONG S M, ZHOU N, et al. Exponential Stability for Stochastic Cohen-Grossberg BAM Neural Networks with Discrete and Distributed Time-Varying Delays[J]. Neurocomputing, 2014, 127:144-151. doi: 10.1016/j.neucom.2013.08.028 [14] KOSMATOPOULOS E B, CHRISTODOULOU M A. Structural Properties of Gradient Recurrent High-Order Neural Networks[J]. IEEE Transactions on Circuits and Systems Ⅱ:Analog and Digital Signal Processing Home Popular Current Issue, 1995, 42(9):592-603. doi: 10.1109/82.466645 [15] WANG T B, ZHAO S W, ZHOU W N, et al. Finite-Time Master-Slave Synchronization and Parameter Identification for Uncertain Lurie Systems[J]. ISA Transactions, 2014, 53(4):1184-1190. doi: 10.1016/j.isatra.2014.03.016 [16] LIU X Y, JIANG N, WANG M, et al. Finite-Time Stochastic Stabiliza-Tion for BAM Neural Networks with Uncertainties[J]. Journal of the Franklin Institute, 2013, 350(8):2109-2123. doi: 10.1016/j.jfranklin.2013.05.027
计量
- 文章访问数: 950
- HTML全文浏览数: 733
- PDF下载数: 40
- 施引文献: 0