-
山葡萄(Vitis amurensis)为葡萄科葡萄属,耐旱、抗低温,是培育优良抗病菌、耐低温新品种葡萄稀有的种质资源[1-3],栽培范围最广泛的果树种类之一,在当今果树生产中具有重要地位,具有很高的经济价值.山葡萄果皮颜色能够影响果实品质,果皮的颜色主要受花色素苷组成的影响.
花色素苷(Anthocyanin)为类黄酮化合物,具有水溶性,是影响植物花、果实以及叶片颜色变化的重要成分.通过研究表明,果皮花色素苷质量浓度的多少决定果皮颜色的深浅,说明果皮色泽的差别与花色素苷的质量浓度相关.花色素苷功能很多,主要是使植物器官产生不同颜色,另外花色素苷对于种子传播、授粉、抵抗病原物侵染、防紫外线损伤等诸多方面都表现出明显作用[4-5].山葡萄因其含有很多可以作为天然色素的花色素苷,可以清除自由基、抗氧化、抗突变和抗疲劳而备受关注.因其栽培管理简单,产量较高,浆果易加工,酿酒工艺较简单,所以有非常好的市场前景.葡萄酒的品质也受花色素苷的影响,在酿造葡萄酒的过程中,多种花色素苷与其他物质相互作用,产生新的花色素苷,且在以后酿造过程中继续产生反应,生成许多复杂的花色素苷衍生物[6].因此对山葡萄花色素苷展开研究十分重要.花色素苷分布在植物的各个组织中,使植物呈现出色彩斑斓的颜色[7-8].但由于花色素苷稳定性影响因子多、降解机制复杂,结构不稳定,针对花色素苷的降解机制及提升花色素苷的稳定性进行研究极其重要.
山葡萄花色素苷的生物合成是一个复杂的过程,花色素苷合成分为两个途径:第一种途径是苯丙烷类代谢途径,第二种途径是类黄酮途径,其中需要很多酶参与,如肉桂酸-4-羟化酶(C4H)是苯丙烷类代谢途径的关键酶,也是植物中分布最广的主要CYP450之一,在花色素苷的形成过程中具有关键作用.与其他CYP450相比,C4H的一个明显特点是在植株的各个组织中均具有很高活性. C4H是第一个被鉴定的植物CYP450单加氧酶,也是第一个被克隆和确定功能的植物CYP450,迄今许多植物的C4H基因已被分离[9].本次实验用山葡萄作为基本材料,采用同源克隆的方法,克隆C4H基因的cDNA片段,得到全长序列.并应用农杆菌介导拟南芥遗传转化方法将农杆菌菌液与植株的花序接触,得到拟南芥转化体,经检测初步验证了目的基因C4H的功能和活性.利用生物学技术来研究C4H基因在山葡萄着色过程中的作用,更准确地揭示山葡萄果皮着色的分子机理.
Cloning Expression and Genetic Transformation Analysis of Vitis amurensis C4H Gene
-
摘要: 通过生物学技术来研究C4H基因在山葡萄着色过程中的作用,进而揭示山葡萄果皮着色的分子机理;利用RT-PCR技术克隆了山葡萄C4H基因的全长cDNA序列,并对该蛋白进行生物信息学分析,预测其功能;利用实时荧光定量PCR检测C4H基因在山葡萄8个不同转色时期的表达量,将克隆获得的山葡萄C4H基因完整的ORF连接到原核表达载体pET28a上,转化到大肠杆菌E. coli BL21(DE3),并通过不同浓度的IPTG诱导表达,SDS-PAGE检测表达产物.为了验证山葡萄C4H基因的功能,构建了表达载体pC C4H并转化农杆菌GV3101.用菌液浸泡花序法对拟南芥进行遗传转化,在含50 mg/L Kan的培养基上对T0代种子进行筛选.克隆获得的山葡萄C4H cDNA全长1 735 bp,开放阅读框1 518 bp,编码505个氨基酸,该基因表达产物分子质量为57.70 KDa,等电点值9.06.C4H基因在山葡萄果皮转色各个时期均存在表达;该基因原核表达产物与预期大小一致,表明原核表达成功,拟南芥遗传转化先后得到3个阳性幼苗.对移栽成活的2株抗性植株进行PCR检测为阳性,2株叶片颜色均变成紫红色;经花色素苷质量浓度的测定表明其质量浓度比对照组植株高出3倍.在拟南芥中花色素苷质量浓度虽然较低,但还是能少量合成,说明其花色素苷生物合成途径是开通的,只是积累的量较少.Abstract:ObjectiveTo study the effect of C4H gene in the staining process of Vitis amurensis via biological technology, thus revealing the molecular mechanism of staining on skin of this fruit.MethodsReverse transcription polymerase chain reaction (RT-PCT) technology was used to clone the full length cDNA sequence of V. amurensis C4H gene and bioinformatic analysis was carried out of this protein to predict its function. Real-time fluorescence quantitative PCR was used to detect the expression level of C4H gene in 8 different color transition periods of V. amurensis and its complete ORF obtained via cloning was connected to the prokaryotic expression vector pET28a and transformed to E. coli BL21 (DE3). The expression was induced by IPTG of different concentrations and the expression product was detected by SDS-PAGE. In order to verify the function of C4H, the expression vector pCC4H was established and Agrobacterium GV3101 was transformed. Genetic transformation was carried out on Arabidopsis by soaking the inflorescences in liquid bacteria. T0 generation seeds were screened out on the culture medium containing 50 mg/L Kan.ResultsThe full length of V. amurensis C4H cDNA obtained via cloning was 1, 735 bp, and the open reading frame was 1, 518 bp, encoding 505 amino acids. The molecular volume (MV) of this gene expression product was 57.70 KDa and the value of isoelectric point was 9.06. C4H gene was expressed in every stage of skin color transformation of V. amurensis. The prokaryotic expression product of the gene was consistent with the expected size, indicating that the prokaryotic expression was successful. Three positive seedlings were obtained from the genetic transformation of Arabidopsis. PCR detection of the two resistant plants which survived after transplanting was positive and the leaves of both plants turned purple. In determination of anthocyanin, its content was 3 times higher than that of plants in the control group.ConclusionAlthough the content of anthocyanin in Arabidopsis is on a relatively low level, it still can be synthesized in a small amount, indicating that the biosynthetic pathway of its anthocyanin is open, though with a small accumulation amount.
-
Key words:
- Vitis amurensis /
- cloning /
- C4H /
- prokaryotic expression /
- genetic transformation .
表 1 生物信息学分析网上软件
软件 网址 分析内容 DNAStar ORF分析及氨基酸序列推导 NCBI BlastP http://www.ncbi.nlm.nih.gov/blastp 蛋白质氨基酸相似性比对 ProtParam http://web.expasy.org/protparam/ 蛋白质的分子质量、等电点及基本性质 Signalp3.0Server http://www.cbs.dtu.dk/services/Signalp 信号肽分析 ProtScale http://web.expasy.org/protscale/ 疏水性分析 ExPASY http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_hnn.html 二级结构预测 TMHMM http://www.cbs.dtu.dk/services/TMHMM-2.0 跨膜结构域 Mitoprot http://ihg.gsf.de/ihg/mitoprot.html TargetP1.1 http://www.cbs.dtu.dk/services/TargetP/ 细胞定位分析 SubLoc v1.0 http://www.bioinfo.tsinghua.edu.cn/SubLoc/eu_predict.htm GeneDoc 氨基酸多序列比对 MEGA5.0 系统进化树构建 表 2 VAmC4H蛋白TargetP 1.1定位分析结果
名称 长度 线粒体 分泌路径 其他 定位 可靠级别 VAmC4H 505 0.012 0.983 0.083 S 1 [1] 陈蒙, 袁赫海, 杨铭慧, 等.山葡萄类黄酮-3-O-葡萄糖基转移酶基因的表达分析[J].河南农业科学, 2018, 47(11):95-98. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnnykx201811018 [2] 刘海峰, 王军.山葡萄谷胱甘肽S-转移酶基因(VAmGST4)克隆及表达分析[J].植物生理学报, 2011, 47(12):1161-1166. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201112005 [3] DONG C, ZHANG Z, REN J P, et al. Stress-Responsive Gene ICE1 from Vitis amurensis Increases Cold Tolerance in Tobacco[J]. Plant Physiology and Biochemistry, 2013, 71:212-217. doi: 10.1016/j.plaphy.2013.07.012 [4] 刘海峰, 杨成君, 于淼, 等.山葡萄UDP-葡萄糖:类黄酮-3-O-葡萄糖基转移酶基因(3GT)cDNA的克隆和分析[J].植物生理学通讯, 2009, 45(8):748-752. doi: http://www.cnki.com.cn/Article/CJFDTotal-ZWSL200908005.htm [5] HARBORNE J B, WILLIAMS C A. Advances in Flavonoid Research since 1992[J]. Phytochemistry, 2000, 55(6):481-504. doi: 10.1016/S0031-9422(00)00235-1 [6] 徐开生.我国马铃薯加工业现状及发展对策[J].农产品加工, 2007(9):55-57. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ncpjg200709033 [7] 陈伊里, 屈冬玉.马铃薯种薯生产与栽培技术-2009[M].哈尔滨:哈尔滨工程大学出版社, 2009. [8] 钟巍然, 柴友荣, 张凯, 等.苯丙烷代谢途径中细胞色素P450的研究[J].安徽农业科学, 2008, 36(13):5285-5289. doi: 10.3969/j.issn.0517-6611.2008.13.017 [9] 付阳, 刘海峰, 李娟, 等.山葡萄总RNA提取方法的比较[J].延边大学农学学报, 2013, 35(4):298-301, 312. doi: 10.3969/j.issn.1004-7999.2013.04.005 [10] 金美芳.拟南芥总RNA的简便提取与效果分析[J].福建师大福清分校学报, 2007(2):16-18. doi: 10.3969/j.issn.1008-3421.2007.02.004 [11] LI S S, STRID Å. Anthocyanin Accumulation and Changes in CHS and PR-5 Gene Expression in Arabidopsis Thaliana after Removal of the Inflorescence Stem (decapitation)[J]. Plant Physiology and Biochemistry, 2005, 43(6):521-525. doi: 10.1016/j.plaphy.2005.05.004 [12] MANCINELLI A L, ROSSI F, MORONI A. Cryptochrome, Phytochrome, and Anthocyanin Production[J]. Plant Physiology, 1991, 96(4):1079-1085. doi: 10.1104/pp.96.4.1079 [13] 卢其能, 杨清, 沈春修.马铃薯3GT基因转化拟南芥引起花色苷大量积累[J].浙江农业学报, 2009, 21(6):544-548. doi: 10.3969/j.issn.1004-1524.2009.06.003 [14] 蔺占兵, 马庆虎, 徐洋.木质素的生物合成及其分子调控[J].自然科学进展, 2003, 13(5):455-461. doi: 10.3321/j.issn:1002-008X.2003.05.002 [15] 张雪, 唐铭浩, 陈蒙, 等.山葡萄不同着色时期果皮转录组测序分析[J].果树学报, 2017, 34(7):781-789. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gskx201707001 [16] 王安娜.大豆C4H基因克隆及生物信息学分析[D].哈尔滨: 东北农业大学, 2010. http://www.cnki.com.cn/Article/CJFDTotal-DBDN201004006.htm [17] MIZUTANI M, WARD E, DIMAIO J, et al. Molecular Cloning and Sequencing of a cDNA Encoding Mung Bean Cytochrome P450(P450C4H) Possessing Cinnamate 4-Hydroxylase Activity[J]. Biochemical and Biophysical Research Communications, 1993, 190(3):875-880. doi: 10.1006/bbrc.1993.1130 [18] 欧阳光察, 薛应龙.植物苯丙烷类代谢的生理意义及其调控[J].植物生理学通讯, 1988, 24(3):9-16. [19] 覃鸿妮, 谢钰珍, 薛高旭, 等.牛胰腺DNaseⅠ基因的合成、表达及功能验证[J].西南大学学报(自然科学版), 2018, 40(6):24-31. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201806004&flag=1 [20] OVERKAMP S, HEIN F, BARZ W. Cloning and Characterization of Eight Cytochrome P450 cDNAs from Chickpea (Cicer Arietinum L.) Cell Suspension Cultures[J]. Plant Science, 2000, 155(1):101-108. doi: 10.1016/S0168-9452(00)00214-4 [21] 吴林, 李洪雷, 姜玉松, 等.月季RhPR10.2基因克隆及生物学功能分析[J].西南大学学报(自然科学版), 2018, 40(8):8-15. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=20180802&flag=1 [22] SMITH C G, RODGERS M W, ZIMMERLIN A, et al. Tissue and Subcellular Immunolocalisation of Enzymes of Lignin Synthesis in Differentiating and Wounded Hypocotyl Tissue of French Bean (Phaseolus Vulgaris L.)[J]. Planta, 1994, 192(2):155-164. doi: 10.1007/BF01089030 [23] 陈肃.白桦4CL与CCoAOMT基因表达分析及蛋白预测[D].哈尔滨: 东北林业大学, 2009. http://cdmd.cnki.com.cn/article/cdmd-10225-2009133605.htm [24] KNOBLOCH K H, HAHLBROCK K. Isoenzymes of p-Coumarate:CoA Ligase from Cell Suspension Cultures of Glycine Max[J]. European Journal of Biochemistry, 1975, 52(2):311-320. doi: 10.1111/j.1432-1033.1975.tb03999.x [25] 姜爽. CCoAOMT和4CLcDNA的克隆及转基因紫穗槐的研究[D].长春: 吉林大学, 2007. http://cdmd.cnki.com.cn/article/cdmd-10183-2007092839.htm
山葡萄C4H基因的克隆表达及遗传转化分析
- 收稿日期: 2018-10-17
摘要: 通过生物学技术来研究C4H基因在山葡萄着色过程中的作用,进而揭示山葡萄果皮着色的分子机理;利用RT-PCR技术克隆了山葡萄C4H基因的全长cDNA序列,并对该蛋白进行生物信息学分析,预测其功能;利用实时荧光定量PCR检测C4H基因在山葡萄8个不同转色时期的表达量,将克隆获得的山葡萄C4H基因完整的ORF连接到原核表达载体pET28a上,转化到大肠杆菌E. coli BL21(DE3),并通过不同浓度的IPTG诱导表达,SDS-PAGE检测表达产物.为了验证山葡萄C4H基因的功能,构建了表达载体pC C4H并转化农杆菌GV3101.用菌液浸泡花序法对拟南芥进行遗传转化,在含50 mg/L Kan的培养基上对T0代种子进行筛选.克隆获得的山葡萄C4H cDNA全长1 735 bp,开放阅读框1 518 bp,编码505个氨基酸,该基因表达产物分子质量为57.70 KDa,等电点值9.06.C4H基因在山葡萄果皮转色各个时期均存在表达;该基因原核表达产物与预期大小一致,表明原核表达成功,拟南芥遗传转化先后得到3个阳性幼苗.对移栽成活的2株抗性植株进行PCR检测为阳性,2株叶片颜色均变成紫红色;经花色素苷质量浓度的测定表明其质量浓度比对照组植株高出3倍.在拟南芥中花色素苷质量浓度虽然较低,但还是能少量合成,说明其花色素苷生物合成途径是开通的,只是积累的量较少.
English Abstract
Cloning Expression and Genetic Transformation Analysis of Vitis amurensis C4H Gene
- Received Date: 2018-10-17
Abstract:
- Figure 1.
- Figure 2.
- Figure 3.
- Figure 4.
- Figure 5.
- Figure 6.
- Figure 7.
- Figure 8.
- Figure 9.
- Figure 10.
- Figure 11.