一类二阶微分方程的正同宿轨
Positive Homoclinic Orbits for a Class of the Second Order Differential Equations
-
摘要: 运用变分方法证明了一类二阶微分方程ü-α(x)u+β(x)u2+γ(x)u3=0,x∈R的正同宿轨存在性,其中系数函数α(x),β(x),γ(x)满足xα'(x)≥0,xβ'(x)≤0,xγ'(x)≤0对任意x∈R成立.
-
关键词:
- 正同宿轨,二阶微分方程,变分方法
Abstract: The existence of positive homoclinic orbits is obtained by the variational approach for a class of the second order differential equations ü-α(x)u+β(x)u2 +γ(x)u3 = 0, where the coefficient functions α(x), β(x), γ(x) satisfy xα'(x) ≥ 0, xβ'(x) ≤ 0, xγ'(x) ≤ 0 for all x ∈ R. -
-
计量
- 文章访问数: 360
- HTML全文浏览数: 136
- PDF下载数: 0
- 施引文献: 0