关于反向Hardy-Hilbert积分不等式的推广
On the Extended Forms of the Reverse Hardy-Hilbert's Integral Inequalities
-
摘要: 通过引入参数及估算权函数,建立了反向Hardy-Hilbert积分不等式的推广式,证明了:若p<0,1/p+1/q=1,2-q<λ<2-p,α≥-β,f(t),g(t)≥0,且0<∫∞α(t+β)1-λfp(t)dt<∞ 0<∫∞α(t+β)1-λgq(t)dt<∞则∫∞α∫∞αf(x)g(y)/(x+y+2β)λdxdy>{∫∞α[kκ(p)-θλ(q)(α+β/t+β)q+λ-2/q](t+β)1-λfp(t)dt}1/p{∫∞α[kλ(p)-p/p+λ-2(α+β/t-β)p+λ-2/p](t+β)1-λgq(t)dt}1/q其中θλ(q)=∫011/(1+u)λuq+λ-2/q-1du,且常数因子kλ(p)=B(p+λ-2/p,q+λ-2/q)为最佳值.
-
-
计量
- 文章访问数: 233
- HTML全文浏览数: 44
- PDF下载数: 0
- 施引文献: 0