积分微分方程单支方法的散逸性
Dissipativity of One-leg Methods for Integro-differential Equations
-
摘要: 讨论了一类积分微分方程在Hilbert空间中单支方法的散逸性,当积分项用复合求积公式逼近时,证明了G(c,P,0)-代数稳定方法在c≤1时是有限维散逸的,在c<1时则是无限维散逸的.数值试验验证了理论分析的正确性.Abstract: The paper is concerned with the dissipativity of one-leg methods for Integro-Differential Equations(IDEs), when the integration term is approximated by the Compound Quadrature (CQ) formula, it is proved that the algebraically stable one-leg methods are dissipative in finite-dimentional space, and are dissipative in infinite- dimentional space, Numerical experiments confirm the theoretical results.
-
-
计量
- 文章访问数: 388
- HTML全文浏览数: 206
- PDF下载数: 0
- 施引文献: 0