一类抽象半线性泛函微分方程的小时滞鲁棒稳定性
Robust Stability of a Class of Abstract Semi-linear Functional Differential Equations with Respect to Small Delays
-
摘要: 研究Banach空间X中的抽象半线性泛函微分方程d/dtx(t) = Ax(t)+F(t, x_t(·))的小时滞鲁棒稳定性,其中无界线性算子A在X上生成一个C0-半群T(t)_t≥0, F是非线性函数.在F是全局Lipschitz连续的条件下,利用算子半群理论以及扰动方法,证明了上述方程的解的指数稳定性对小时滞是鲁棒的.Abstract: The robust stability of the abstract semi-linear functional differential equationd/dtx(t)= Ax(t)+F(t, x_t(·))is considered in Banach space X, where the linear operator A generates a C_0-semigroup [T(t)]_t≥0in X, and F is a nonlinear function. Under the condition that F is globally Lipschitz continuous, and the robust stability of the above equation is proved with the operator semi-group theory and perturba-tion method.
-
-
计量
- 文章访问数: 297
- HTML全文浏览数: 137
- PDF下载数: 0
- 施引文献: 0