留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

对靶施药技术装备在植物病虫草害防控中的应用及展望

上一篇

下一篇

刘理民, 何雄奎, 刘亚佳, 等. 对靶施药技术装备在植物病虫草害防控中的应用及展望[J]. 植物医学, 2023, (5): 1-16. doi: 10.13718/j.cnki.zwyx.2023.05.001
引用本文: 刘理民, 何雄奎, 刘亚佳, 等. 对靶施药技术装备在植物病虫草害防控中的应用及展望[J]. 植物医学, 2023, (5): 1-16. doi: 10.13718/j.cnki.zwyx.2023.05.001
LIU Limin, HE Xiongkui, LIU Yajia, et al. Target Pesticide Application Technology Equipment and Future Developments in the Control of Plant Pests, Diseases and Weeds[J]. PLANT HEALTH AND MEDICINE, 2023, (5): 1-16. doi: 10.13718/j.cnki.zwyx.2023.05.001
Citation: LIU Limin, HE Xiongkui, LIU Yajia, et al. Target Pesticide Application Technology Equipment and Future Developments in the Control of Plant Pests, Diseases and Weeds[J]. PLANT HEALTH AND MEDICINE, 2023, (5): 1-16. doi: 10.13718/j.cnki.zwyx.2023.05.001

对靶施药技术装备在植物病虫草害防控中的应用及展望

详细信息
    作者简介:

    刘理民,博士研究生,主要从事智能植保技术及设备研究. .

  • 中图分类号: S432

Target Pesticide Application Technology Equipment and Future Developments in the Control of Plant Pests, Diseases and Weeds

  • 摘要: 近年来,绿色农药及靶向农药等新农药被广泛应用到作物保护中,但国内植保从业者对对靶施药技术的了解并不深入.本文将对靶施药技术类比于靶向农药和机器人控制技术,并将其分为实现过程和载体来进行描述,具体从4个部分展开介绍.第一,用于感知信息的传感器和技术,类似于机器人的"感知"功能,可以看作是人体的"眼睛";第二,对靶施药技术的计算和决策模型,类似于机器人的"决策"功能,可以看作是人体的"大脑";第三,对靶施药技术的施药量控制方法,类似于机器人的"控制"功能,可以看作是人体的"手";第四,几种典型的对靶施药机.本文亦指出了对靶施药技术装备的未来发展方向,即向着本土化、智能化、傻瓜化和农艺农机相结合的方向发展.
  • 加载中
  • [1] 钱旭红. 我国绿色化学农药的基础研究进展-先导结构和作用靶标[C]//植物保护科技创新与发展-中国植物保护学会2008年学术年会论文集. 重庆, 2008:23-24.
    [2] 彭霞. 农药靶标乙酰胆碱酯酶的分离纯化及性质研究[D]. 成都:四川大学, 2007.
    [3] 吴士雄. 我国的农药市场与靶标防治[J]. 农药, 2000, 39(1):7-10.
    [4] 崔丰莉, 李鑫, 马志卿, 等. 动物源农药斑蝥素对部分非靶标生物的安全性评价[J]. 环境昆虫学报, 2009, 31(2):143-149.
    [5] 何雄奎. 中国精准施药技术和装备研究现状及发展建议[J]. 智慧农业(中英文), 2020, 2(1):133-146.
    [6] 何雄奎. 植保精准施药技术装备[J]. 农业工程技术, 2017, 37(30):22-26.
    [7] 傅泽田, 祁力钧, 王俊红. 精准施药技术研究进展与对策[J]. 农业机械学报, 2007, 38(1):189-192.
    [8] 张波, 翟长远, 李瀚哲, 等. 精准施药技术与装备发展现状分析[J]. 农机化研究, 2016, 38(4):1-5, 28.
    [9] 南玉龙, 张慧春, 徐幼林, 等. 农林仿形对靶喷雾及其控制技术研究进展[J]. 世界林业研究, 2018, 31(4):54-58.
    [10] 闫成功, 徐丽明, 袁全春, 等. 基于双目视觉的葡萄园变量喷雾控制系统设计与试验[J]. 农业工程学报, 2021, 37(11):13-22.
    [11] 齐亚聪, 杨会民, 陈毅飞, 等. 变量喷雾靶标探测技术研究现状与展望[J]. 中国农机化学报, 2022, 43(6):83-89, 149.
    [12] 张志宏. 山地果园对靶变量施药喷雾机关键技术研究[D]. 广州:华南农业大学, 2019.
    [13] 许林云, 张昊天, 张海锋, 等. 果园喷雾机自动对靶喷雾控制系统研制与试验[J]. 农业工程学报, 2014, 30(22):1-9.
    [14] 王震涛, 牛浩, 唐玉荣, 等. 果园喷雾机械及技术的研究现状[J]. 塔里木大学学报, 2019, 31(3):83-91.
    [15] 江世界, 马恒涛, 杨圣慧, 等. 果园喷雾机器人靶标探测与追踪系统[J]. 农业工程学报, 2021, 37(9):31-39.
    [16] XU Y L, WANG X D, ZHAI Y T, et al. Precise Variable Spraying System Based on Improved Genetic Proportional-Integral-Derivative Control Algorithm[J]. Transactions of the Institute of Measurement and Control, 2021, 43(14):3255-3266.
    [17] FAROOQUE A A, HUSSAIN N, SCHUMANN A W, et al. Field Evaluation of a Deep Learning-Based Smart Variable-Rate Sprayer for Targeted Application of Agrochemicals[J]. Smart Agricultural Technology, 2023, 3:100073.
    [18] ROMÁN C, LLORENS J, URIBEETXEBARRIA A, et al. Spatially Variable Pesticide Application in Vineyards:Part II, Field Comparison of Uniform and Map-Based Variable Dose Treatments[J]. Biosystems Engineering, 2020, 195:42-53.
    [19] GIL E, ESCOLÀ A, ROSELL J R, et al. Variable Rate Application of Plant Protection Products in Vineyard Using Ultrasonic Sensors[J]. Crop Protection, 2007, 26(8):1287-1297.
    [20] 姜红花, 白鹏, 刘理民, 等. 履带自走式果园自动对靶风送喷雾机研究[J]. 农业机械学报, 2016, 47(S1):189-195.
    [21] 韩冷, 何雄奎, 王昌陵, 等. 智慧果园构建关键技术装备及展望[J]. 智慧农业(中英文), 2022, 4(3):1-11.
    [22] 刘理民. 基于果树冠层探测的变量喷雾技术研究与试验[D]. 泰安:山东农业大学, 2019.
    [23] 刘理民, 王金宇, 毛文华, 等. 基于传感器融合阵列的果树冠层信息采集方法[J]. 农业机械学报, 2018, 49(S1):347-353, 359.
    [24] WEI Z M, XUE X Y, SALCEDO R, et al. Key Technologies for an Orchard Variable-Rate Sprayer:Current Status and Future Prospects[J]. Agronomy, 2022, 13(1):59.
    [25] ROSELL J R, SANZ R. A Review of Methods and Applications of the Geometric Characterization of Tree Crops in Agricultural Activities[J]. Computers and Electronics in Agriculture, 2012, 81:124-141.
    [26] BAO X L, NIU Y X, LI Y S, et al. Design and Kinematic Analysis of Cable-Driven Target Spray Robot for Citrus Orchards[J]. Applied Sciences, 2022, 12(18):9379.
    [27] BALSARI P, DORUCHOWSKI G, MARUCCO P, et al. A System for Adjusting the Spray Application to the Target Characteristics[J]. Agricultural Engineering International:CIGR Journal, 2008.
    [28] DORUCHOWSKI G, JAEKEN P, HOLOWNICKI R. Target Detection as a Tool of Selective Spray Application on Trees and Weeds in Orchards[C]//Proc SPIE 3543, Precision Agriculture and Biological Quality, 1999, 3543:290-301.
    [29] 邹建军, 曾爱军, 何雄奎, 等. 果园自动对靶喷雾机红外探测控制系统的研制[J]. 农业工程学报, 2007, 23(1):129-132.
    [30] 刘金龙, 郑泽锋, 丁为民, 等. 对靶喷雾红外探测器的设计与探测距离测试[J]. 江苏农业科学, 2013, 41(7):368-370.
    [31] 窦汉杰, 翟长远, 王秀, 等. 基于LiDAR的果园对靶变量喷药控制系统设计与试验[J]. 农业工程学报, 2022, 38(3):11-21.
    [32] 毛文华, 曹晶晶, 姜红花, 等. 基于多特征的田间杂草识别方法[J]. 农业工程学报, 2007, 23(11):206-209.
    [33] 姜红花, 王鹏飞, 张昭, 等. 基于卷积网络和哈希码的玉米田间杂草快速识别方法[J]. 农业机械学报, 2018, 49(11):30-38.
    [34] 周良富, 薛新宇, 周立新, 等. 果园变量喷雾技术研究现状与前景分析[J]. 农业工程学报, 2017, 33(23):80-92.
    [35] 谷趁趁, 翟长远, 陈立平, 等. 基于激光雷达的树形靶标冠层叶面积探测模型研究[J]. 农业机械学报, 2021, 52(11):278-286.
    [36] 翟长远, 赵春江, 王秀, 等. 树型喷洒靶标外形轮廓探测方法[J]. 农业工程学报, 2010, 26(12):173-177.
    [37] 李龙龙, 何雄奎, 宋坚利, 等. 基于变量喷雾的果园自动仿形喷雾机的设计与试验[J]. 农业工程学报, 2017, 33(1):70-76.
    [38] 阎广建, 胡容海, 罗京辉, 等. 叶面积指数间接测量方法[J]. 遥感学报, 2016, 20(5):958-978.
    [39] YAN G J, HU R H, LUO J H, et al. Review of Indirect Optical Measurements of Leaf Area Index:Recent Advances, Challenges, and Perspectives[J]. Agricultural and Forest Meteorology, 2019, 265:390-411.
    [40] CUI L, JIAO Z T, ZHAO K G, et al. Retrieval of Vertical Foliage Profile and Leaf Area Index Using Transmitted Energy Information Derived from ICESat GLAS Data[J]. Remote Sensing, 2020, 12(15):2457.
    [41] SANZ R, ROSELL J R, LLORENS J, et al. Relationship between Tree Row LIDAR-Volume and Leaf Area Density for Fruit Orchards and Vineyards Obtained with a LIDAR 3D Dynamic Measurement System[J]. Agricultural and Forest Meteorology, 2013, 171-172:153-162.
    [42] JONCKHEERE I, FLECK S, NACKAERTS K, et al. Review of Methods for in Situ Leaf Area Index Determination[J]. Agricultural and Forest Meteorology, 2004, 121(1-2):19-35.
    [43] 谷趁趁. 苹果园风送喷药靶标特征探测与风力损失模型研究[D]. 杨凌:西北农林科技大学, 2021.
    [44] SANZ R, LLORENS J, ESCOL? A, et al. LIDAR and Non-LIDAR-Based Canopy Parameters to Estimate the Leaf Area in Fruit Trees and Vineyard[J]. Agricultural and Forest Meteorology, 2018, 260-261:229-239.
    [45] 翟肇裕, 曹益飞, 徐焕良, 等. 农作物病虫害识别关键技术研究综述[J]. 农业机械学报, 2021, 52(7):1-18.
    [46] LIU J, WANG X W. Plant Diseases and Pests Detection Based on Deep Learning:a Review[J]. Plant Methods, 2021, 17(1):22.
    [47] SINGH V, MISRA A K. Detection of Plant Leaf Diseases Using Image Segmentation and Soft Computing Techniques[J]. Information Processing in Agriculture, 2017, 4(1):41-49.
    [48] HUANG H S, DENG J Z, LAN Y B, et al. Detection of Helminthosporium Leaf Blotch Disease Based on UAV Imagery[J]. Applied Sciences, 2019, 9(3):558.
    [49] 王卫星, 刘泽乾, 高鹏, 等. 基于改进YOLO v4的荔枝病虫害检测模型[J]. 农业机械学报, 2023, 54(5):227-235.
    [50] CHEN J D, CHEN J X, ZHANG D F, et al. A Cognitive Vision Method for the Detection of Plant Disease Images[J]. Machine Vision and Applications, 2021, 32(1):31.
    [51] SOH A C, RADZI N F M, YUSOF U K M, et al. Development of Electronic Nose for Classification of Aromatic Herbs Using Artificial Intelligent Techniques[J]. Journal of Engineering Science and Technology, 2018, 13(10):3043-3057.
    [52] ERDEM Ş, FATIH E, NASIE C, et al. Electronic Nose System Based on a Functionalized Capacitive Micromachined Ultrasonic Transducer (CMUT) Array for Selective Detection of Plant Volatiles[J]. Sensors and Actuators:B Chemical, 2021, 341:130001.
    [53] OATES M J, ABU-KHALAF N, MOLINA-CABRERA C, et al. Detection of Lethal Bronzing Disease in Cabbage Palms (Sabal Palmetto) Using a Low-Cost Electronic Nose[J]. Biosensors, 2020, 10(11):188.
    [54] 刘理民, 何雄奎, 刘亚佳. 多功能果园作业平台安全性研究进展[J]. 农业工程, 2020, 10(12):7-13.
    [55] BBA, 1988. Biologische Bundesapstalt für Land- und Forstwirtschaft, 1988 Pflanzenschutzmittel-Verzeichnis, Teil 2-Gemüsebau-Obstbau-Zierpflanzenbau. BBA Braunschweig, 1988.
    [56] STRELOKE M. The Establishment of a Long-Term Toxicity Test on Sediment-Dwelling Organisms in the Registration Procedure of Plant Protection Products[J]. Mitteilungen aus der Biologischen Bundesanstalt fur Land-und Forstwirtschaft Berlin-Dahlem, 1995(315):85-96.
    [57] GARCERÁ C, DORUCHOWSKI G, CHUECA P. Harmonization of Plant Protection Products Dose Expression and Dose Adjustment for High Growing 3D Crops:a Review[J]. Crop Protection, 2021, 140:105417.
    [58] FRIESSLEBEN R, ROSSLENBROICH H, ELBERT A. Dose Expression in Plant Protection Product Field Testing in High Crops:Need for Harmonization[J]. Pflanzenschutz Nachrichten Bayer English Edition, 2006, 60(1):85-96.
    [59] RÜEGG J, SIEGFRIED W, RAISIGL U, et al. Registration of Plant Protection Products in EPPO Countries:Current Status and Possible Approaches to Harmonization[J]. EPPO Bulletin, 2001, 31(2):143-152.
    [60] RÜEGG J, VIRET O, RAISIGL U. Adaptation of Spray Dosage in Stone-Fruit Orchards on the Basis of Tree Row Volume[J]. EPPO Bulletin, 1999, 29(1-2):103-110.
    [61] RÜEGG J, VIRET O. Determination of the Tree Row Volume in Stone-Fruit Orchards as a Tool for Adapting the Spray Dosage[J]. EPPO Bulletin, 1999, 29(1-2):95-101.
    [62] BYERS R E, HICKEY K D, HILL C H. Base gallonage per acre[J]. Virginia Fruit, 1971, 60(8):19-23.
    [63] BYERS R E. Tree-Row-Volume Spraying Rate Calculator for Apples[J]. HortScience, 1987, 22(3):506-507.
    [64] HERRERA-AGUIRRE E, UNRATH C R. Chemical Thinning Response of 'Delicious' Apples to Volume of Applied Water1[J]. HortScience, 1980, 15(1):43-44.
    [65] MANKTELOW D W L, PRAAT J P. The Tree-Row-Volume Spraying System and Its Potential Use in New Zealand[J]. Proceedings of the New Zealand Plant Protection Conference, 1997, 50:119-124.
    [66] SANTIAGO P, CARLA R, RICARDO S, et al. Bases for Pesticide Dose Expression and Adjustment in 3D Crops and Comparison of Decision Support Systems[J]. The Science of the Total Environment, 2021, 806:150357.
    [67] SIEGFRIED W, VIRET O, HUBER B, et al. Dosage of Plant Protection Products Adapted to Leaf Area Index in Viticulture[J]. Crop Protection, 2007, 26(2):73-82.
    [68] Dose Expression for Plant Protection Products[J]. EPPO Bulletin, 2005, 35(3):563-566. DOI:10.1111/j.1365-2338.2005.00866.x.
    [69] KOCH H, WEISSER P. Aufwandmenge und Initialbelag am Zielobjekt-zwei Kenngrossen fur Applikation und Wirksamkeit von Pflanzenschutzmitteln[J]. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes, 1995, 47(11):273-278.
    [70] WALKLATE P J, CROSS J V, PERGHER G. Support System for Efficient Dosage of Orchard and Vineyard Spraying Products[J]. Computers and Electronics in Agriculture, 2011, 75(2):355-362.
    [71] ROSELL POLO J R, SANZ R, LLORENS J, et al. A Tractor-Mounted Scanning LIDAR for the Non-Destructive Measurement of Vegetative Volume and Surface Area of Tree-Row Plantations:a Comparison with Conventional Destructive Measurements[J]. Biosystems Engineering, 2009, 102(2):128-134.
    [72] WALKLATE P J, CROSS J V, RICHARDSON G M, et al. IT-Information Technology and the Human Interface[J]. Biosystems Engineering, 2002, 82(3):253-267.
    [73] PLANAS S, CAMP F, ESCOLà A A, et al. Advances in Pesticide Dose Adjustment in Tree Crops[C]//Precision agriculture'13. Wageningen Academic Publishers, 2013:533-539.
    [74] SANZ-CORTIELLA R, LLORENS-CALVERAS J, ESCOLÀ A, et al. Innovative LIDAR 3D Dynamic Measurement System to Estimate Fruit-Tree Leaf Area[J]. Sensors, 2011, 11(6):5769-5791.
    [75] HOLTERMAN H J, VAN DE ZANDE J C, HUIJSMANS J F M, et al. An Empirical Model Based on Phenological Growth Stage for Predicting Pesticide Spray Drift in Pome Fruit Orchards[J]. Biosystems Engineering, 2017, 154:46-61.
    [76] RINALDI M, LLORENS J, GIL E. Electronic Characterization of the Phenological Stages of Grapevine Using a LIDAR Sensor[C]//Precision Agriculture'13, Wageningen Academic Publishers, 2013:603-609.
    [77] 何雄奎. 高效植保机械与精准施药技术进展[J]. 植物保护学报, 2022, 49(1):389-397.
    [78] 刘理民, 张晓辉, 石光智, 等. 多态自动对靶风送式喷雾试验台的设计与试验[J]. 江苏农业科学, 2019, 47(13):260-263.
    [79] MOLTÓ E, MARTIN B, GUTIERREZ A. Pesticide Loss Reduction by Automatic Adaptation of Spraying on Globular Trees[J]. Journal of Agricultural Engineering Research, 2001, 78(1):35-41.
    [80] GONZALEZ R, PAWLOWSKI A, RODRIGUEZ C, et al. Design and Implementation of an Automatic Pressure-Control System for a Mobile Sprayer for Greenhouse Applications[J]. Spanish Journal of Agricultural Research, 2012, 10(4):939.
    [81] 代祥, 徐幼林, 陈骏阳, 等. 射流混药器改进提高混药均匀性及动态浓度一致性[J]. 农业工程学报, 2019, 35(8):65-74.
    [82] 蔡祥, WALGENBACH M, DOERPMUND M, 等. 基于电磁阀的喷嘴直接注入式农药喷洒系统[J]. 农业机械学报, 2013, 44(6):69-72, 200.
    [83] 魏新华, 蒋杉, 孙宏伟, 等. PWM间歇喷雾式变量喷施控制器设计与测试[J]. 农业机械学报, 2012, 43(12):87-93, 129.
    [84] 邓巍, 丁为民, 何雄奎. PWM间歇式变量喷雾的雾化特性[J]. 农业机械学报, 2009, 40(1):74-78.
    [85] 印祥, 王亚林, 杜娟, 等. 基于PWM的电控精量喷嘴体设计与试验[J]. 农业工程学报, 2022, 38(S1):18-26.
    [86] 代祥, 肖静, 徐幼林, 等. 动态下电磁阀控对靶喷雾流量特性及控制方法[J]. 江苏农业学报, 2019, 35(2):476-483.
    [87] 邱白晶, 李坤, 沈成杰, 等. 连续可变量喷雾系统响应特性试验[J]. 农业机械学报, 2010, 41(9):32-35, 79.
    [88] 邱白晶, 闫润, 马靖, 等. 变量喷雾技术研究进展分析[J]. 农业机械学报, 2015, 46(3):59-72.
    [89] CHEN Y, ZHU H, OZKAN H E. Development of a Variable-Rate Sprayer with Laser Scanning Sensor to Synchronize Spray Outputs to Tree Structures[J]. Transactions of the ASABE, 2012, 55(3):773-781.
    [90] 刘理民, 何雄奎, 刘伟洪, 等. 果园自主导航兼自动对靶喷雾机器人[J]. 智慧农业(中英文), 2022, 4(3):63-74.
    [91] 庄进. 果园仿形变量对靶喷雾机设计与靶标探测方法研究[D]. 镇江:江苏大学, 2021.
    [92] 杨征鹤. 基于LiDAR的温室对靶喷雾机器人设计与试验[D]. 乌鲁木齐:新疆农业大学, 2021.
    [93] 徐艳蕾, 包佳林, 付大平, 等. 多喷头组合变量喷药系统的设计与试验[J]. 农业工程学报, 2016, 32(17):47-54.
    [94] RAMÓN S, ZHU H P, ERDAL O, et al. Reducing Ground and Airborne Drift Losses in Young Apple Orchards with PWM-Controlled Spray Systems[J]. Computers and Electronics in Agriculture, 2021, 189:106389.
    [95] 何雄奎, 严苛荣, 储金宇, 等. 果园自动对靶静电喷雾机设计与试验研究[J]. 农业工程学报, 2003, 19(6):78-80.
    [96] 李丽, 李恒, 何雄奎, 等. 红外靶标自动探测器的研制及试验[J]. 农业工程学报, 2012, 28(12):159-163.
    [97] 李龙龙, 何雄奎, 宋坚利, 等. 果园仿形变量喷雾与常规风送喷雾性能对比试验[J]. 农业工程学报, 2017, 33(16):56-63.
  • 加载中
计量
  • 文章访问数:  574
  • HTML全文浏览数:  518
  • PDF下载数:  567
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-09-06

对靶施药技术装备在植物病虫草害防控中的应用及展望

    作者简介: 刘理民,博士研究生,主要从事智能植保技术及设备研究.
  • 中国农业大学 理学院, 北京 100193
基金项目: 

摘要: 近年来,绿色农药及靶向农药等新农药被广泛应用到作物保护中,但国内植保从业者对对靶施药技术的了解并不深入.本文将对靶施药技术类比于靶向农药和机器人控制技术,并将其分为实现过程和载体来进行描述,具体从4个部分展开介绍.第一,用于感知信息的传感器和技术,类似于机器人的"感知"功能,可以看作是人体的"眼睛";第二,对靶施药技术的计算和决策模型,类似于机器人的"决策"功能,可以看作是人体的"大脑";第三,对靶施药技术的施药量控制方法,类似于机器人的"控制"功能,可以看作是人体的"手";第四,几种典型的对靶施药机.本文亦指出了对靶施药技术装备的未来发展方向,即向着本土化、智能化、傻瓜化和农艺农机相结合的方向发展.

English Abstract

参考文献 (97)

目录

/

返回文章
返回