| QI L Q. Eigenvalues of a Real Supersymmetric Tensor[J]. Journal of Symbolic Computation, 2005, 40(6): 1302-1324. |
| KOFIDIS E, REGALIA P A. On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors[J]. SIAM Journal on Matrix Analysis and Applications, 2002, 23(3): 863-884. |
| COUR T, SRINIVASAN P, SHI J B. Balanced Graph Matching[M] //Advances in Neural Information Processing Systems. Cambridge: The MIT Press, 2007: 313-320. |
| 杨占英, 于云霞.高维张量积Meyer小波的一种新分解(英文)[J].西南大学学报(自然科学版), 2012, 34(2): 74-77. |
| WANG G, ZHOU G L, CACCETTA L. Z-Eigenvalue Inclusion Theorems for Tensors[J]. Discrete and Continuous Dynamical Systemsseries, 2017, 22(1): 187-198. |
| WANG Y N, WANG G. Two S-Type Z-Eigenvalue Inclusion Sets for Tensors[J]. Journal of Inequalities and Applications, 2017, 2017: 152. |
| 刘蕊, 陈震, 刘奇龙.判定对称强H-张量的迭代算法[J].贵州师范大学学报(自然科学版), 2019, 37(3): 72-76. |
| 何军, 刘衍民.张量伪谱的新包含域[J].西南师范大学学报(自然科学版), 2019, 44(8): 7-10. |
| 钟琴.非负矩阵最大特征值的新界值[J].西南大学学报(自然科学版), 2018, 40(2): 40-43. |
| 闫逸波, 陈震.一类张量方程的基于梯度的迭代方法[J].贵州师范大学学报(自然科学版), 2017, 35(3): 59-62. |
| DUTTA A, LLADÓS J, BUNKE H, et al. Product Graph-Based Higher Order Contextual Similarities for Inexact Subgraph Matching[J]. Pattern Recognition, 2018, 76: 596-611. |
| BENSON A R. Three Hypergraph Eigenvector Centralities[J]. SIAM Journal on Mathematics of Data Science, 2019, 1(2): 293-312. |
| BENSON A R, GLEICH D F, LESKOVEC J. Tensor Spectral Clustering for Partitioning Higher-Order Network Structures[C] //Proceedings of the 2015 SIAM International Conference on Data Mining, Philadelphia, PA: Society for Industrial and Applied Mathematics, 2015: 118-126. |
| SHI X C, LING H B, PANG Y, et al. Rank-1 Tensor Approximation for High-Order Association in Multi-Target Tracking[J]. International Journal of Computer Vision, 2019, 127(8): 1063-1083. |
| DUCHENNE O, BACH F, KWEON I S, et al. A Tensor-Based Algorithm for High-Order Graph Matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2383-2395. |
| KOLDA T G, MAYO J R. Shifted Power Method for Computing Tensor Eigenpairs[J]. SIAM Journal on Matrix Analysis and Applications, 2011, 32(4): 1095-1124. |