TRUDINGER N. On Imbeddings into Orlicz Spaces and Some Applications [J]. J Math Mech, 1967, 17: 473-483.
MOSER J. A Sharp Form of an Inequality by N. Trudinger [J]. Indiana Univ Math J, 1970, 71(20): 1077-1092.
陈卫, 唐春雷.一类超线性分数阶Schrödinger方程解的多重性[J].西南师范大学学报(自然科学版), 2019, 44(4): 26-30.
NEZZA E D, PALATUCCI G, VALDINOCI E. Hitchhiker's Guide to the Fractional Sobolev Spaces [J]. Bull Sci Math, 2012, 136(5): 521-573. doi: 10.1016/j.bulsci.2011.12.004
MOLICA BISCI G, RÂDULESCU V, SERVADEI R. Variational Methods for Nonlocal Fractional Equations [M]. Cambridge: Cambridge University Press, 2016.
张维, 唐春雷.一类次线性分数阶Schrödinger方程的无穷多解[J].西南大学学报(自然科学版), 2018, 40(6): 78-83.
叶景兰, 邓圣兵.带有一般非线性项的分数阶Kirchhoff-Schrödinger-Poisson系统的变号解[J].西南师范大学学报(自然科学版), 2019, 44(4): 16-21.
PARINI E, BUF B. On the Moser-Trudinger Inequality in Fractional Sobolev-Slobodeckij Spaces [J]. Journal d'Analvse Mathematique, 2019, 138(1): 281-300. doi: 10.1007/s11854-019-0029-3
DE SOUZA M, ARAUJO Y L. Semilinear Elliptic Equations for the Fractional Laplacian Involving Critical Exponential Growth [J]. Math Methods Appl Sci, 2017, 40(5): 1757-1772. doi: 10.1002/mma.4095
IANNIZZOTTO A, SQUASSINA M. 1/2-Laplacian Problems with Exponential Nonlinearity [J]. J Math Anal Appl, 2014, 414(1): 372-385.
LI Q, YANG Z D. Multiple Solutions for a Class of Fractional Quasi-Linear Equations with Critical Exponential Growth in RN [J]. Complex Var Elliptic Equ, 2016, 61(7): 969-983. doi: 10.1080/17476933.2015.1131683
PERERA K, SQUASSINA M. Bifurcation Results for Problems with Fractional Trudinger-Moser Nonlinearity [J]. Discrete Contin Dyn Syst, 2018, 11(3): 561-576. doi: 10.3934/dcdss.2018031
BEZERRA DO J M. Semilinear Dirichlet Problems for the N-Laplacian in RN with Nonlinearities in the Critical Growth Range [J]. Differential and Integral Equations, 1996, 9(5): 967-979.
FIGUEIREDO D G, MIYAGAKI O H, RUF B. Elliptic Equations in R2 with Nonlinearities in the Critical Growth Range [J]. Calc Var Partial Differential Equations, 1996, 4(2): 139-153.
LAM N, LU G. Existence and Multiplicity of Solutions to Equations of N-Laplacian Type with Critical Exponential Growth in RN [J]. J Funct Anal, 2012, 262(3): 1132-1165. doi: 10.1016/j.jfa.2011.10.012
MAWHIN J, WILLEM M. Critical Point Theory and Hamiltonian System [M]. Berlin: Springer-Verlag, 1989.