LECUN Y, BENGIO Y, HINTON G. Deep Learning [J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539
|
XU D K, TIAN Y J. A Comprehensive Survey of Clustering Algorithms [J]. Annals of Data Science, 2015, 2(2): 165-193. doi: 10.1007/s40745-015-0040-1
|
ZHENG L, YANG Y, TIAN Q. SIFT Meets CNN: a Decade Survey of Instance Retrieval [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(5): 1224-1244. doi: 10.1109/TPAMI.2017.2709749
|
ANNUNZIATA R, SAGONAS C, CALI J. Jointly Aligning Millions of Images with Deep Penalised Reconstruction Congealing [EB/OL]. 2019: arXiv: 1908. 04130 [cs. CV]. https://arxiv.org/abs/1908.04130.
|
LUAN Y, LI H. Clustering of Time-course Gene Expression Data Using a Mixed-effects Model with B-splines [J]. Bioinformatics, 2003, 19(4): 474-482. doi: 10.1093/bioinformatics/btg014
|
DHILLON I S, MODHA D S. Concept Decompositions for Large Sparse Text Data Using Clustering [J]. Machine Learning, 2001, 42(1/2): 1-31.
|
LI Z C, LIU J, YANG Y, et al. Clustering-Guided Sparse Structural Learning for Unsupervised Feature Selection [J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(9): 2138-2150. doi: 10.1109/TKDE.2013.65
|
ERHAN D, BENGIO Y, COURVILLE A, et al. Why Does Unsupervised Pre-training Help Deep Learning? [J]. Journal of Machine Learning Research, 2010, 11(3): 625-660.
|
MACQUEEN J B. Some methods for classification and analysis of multivariate observations [C] // Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. California: University of California Press, 1967.
|
PARK H S, JUN C H. A Simple and Fast Algorithm for K-medoids Clustering [J]. Expert Systems With Applications, 2009, 36(2): 3336-3341. doi: 10.1016/j.eswa.2008.01.039
|
KAUFMAN L, ROUSSEEUW P J. Partitioning around Medoids (Program PAM) [M] //Finding Groups in Data. Hoboken: John Wiley & Sons, 2008: 68-125.
|
SARLE W S, KAUFMAN L, ROUSSEEUW P J. Finding Groups in Data: an Introduction to Cluster Analysis [J]. Journal of the American Statistical Association, 1991, 86(415): 830.
|
ZHANG T, RAMAKRISHNAN R, LIVNY M. BIRCH: an Efficient Data Clustering Method for very Large Databases [J]. ACM SIGMOD Record, 1999, 25(2): 15-34.
|
GUHA S, RASTOGI R, SHIM K. Cure: an Efficient Clustering Algorithm for Large Databases [J]. Information Systems, 2001, 26(1): 35-58.
|
GUHA S, RASTOGI R, SHIM K. Rock: a Robust Clustering Algorithm for Categorical Attributes [J]. Information Systems, 2000, 25(5): 345-366. doi: 10.1016/S0306-4379(00)00022-3
|
BEZDEK J C, EHRLICH R, FULL W. FCM: The Fuzzy C-means Clustering Algorithm [J]. Computers & Geosciences, 1984, 10(2-3): 191-203.
|
DAVE R N, BHASWAN K. Adaptive Fuzzy C-shells Clustering and Detection of Ellipses [J]. IEEE Transactions on Neural Networks, 1992, 3(5): 643-662. doi: 10.1109/72.159055
|
YAGER R R, FILEV D P. Approximate Clustering via the Mountain Method [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24(8): 1279-1284. doi: 10.1109/21.299710
|
XU X, ESTER M, KRIEGEL H P, et al. A Distribution-Based Clustering Algorithm for Mining in Large Spatial Databases [C] // IEEE International Conference on Data Engineering. New York: IEEE Press, 1998.
|
Rasmussen C E. The Infinite Hidden Markov Model [M] //Advances in Neural Information Processing Systems 14. Massachusetts: The MIT Press, 2002.
|
ESTER M. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise [C] // Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining. California: AAAI Press, 1996.
|
ANKERST M, BREUNIG M M, KRIEGEL H P, et al. OPTICS: Ordering Points to Identify the Clustering Structure [C] //Proceedings of the 1999 ACM SIGMOD international conference on Management of data - SIGMOD′99. May 31-June 3, 1999. Philadelphia, Pennsylvania, USA. New York: ACM Press, 1999.
|
COMANICIU D, MEER P. Mean Shift: a Robust Approach Toward Feature Space Analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619. doi: 10.1109/34.1000236
|
SCHÖLKOPF B, SMOLA A, MVLLER K R. Nonlinear Component Analysis as a Kernel Eigenvalue Problem [J]. Neural Computation, 1998, 10(5): 1299-1319. doi: 10.1162/089976698300017467
|
Macdonald D, Fyfe C. The kernel self-organising map [C] // International Conference on Knowledge-based Intelligent Engineering Systems & Allied Technologies. IEEE, 2000.
|
BENHUR A, HORN D, SIEGELMANN H T, et al. Support Vector Clustering [J]. Journal of Machine Learning Research, 2002, 2(2): 125-137.
|
Xu L, Neufeld J, Larson B, et al. Maximum Margin Clustering [C] // Neural Information Processing Systems 1. Massachusetts: MIT Press, 2004: 1537-1544.
|
LI F J, QIAN Y H, WANG J T, et al. Clustering Ensemble Based on Sample's Stability [J]. Artificial Intelligence, 2019, 273: 37-55. doi: 10.1016/j.artint.2018.12.007
|
FREY B J, DUECK D. Clustering by Passing Messages between Data Points [J]. Science, 2007, 315(5814): 972-976. doi: 10.1126/science.1136800
|
RODRIGUEZ A, LAIO A. Machine Learning. Clustering by Fast Search and Find of Density Peaks [J]. Science, 2014, 344(6191): 1492-1496. doi: 10.1126/science.1242072
|
BONNIER B. Random Sequential Adsorption Ofk-mers on a Square Lattice: The Largekregime [J]. Physical Review E, 1996, 54(1): 974-976. doi: 10.1103/PhysRevE.54.974
|
Chitta R, Jain A K, Jin R. Sparse Kernel Clustering of Massive High-Dimensional Data sets with Large Number of Clusters [C] // Proceedings of the 8th Workshop on Ph. D. Workshop in Information and Knowledge Management 2015. New York: ACM Press, 2015.
|
CURTIN R R. A Dual-Tree Algorithm for Fast K-means Clustering with Large K [M] //Proceedings of the 2017 SIAM International Conference on Data Mining. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2017: 300-308.
|
QIAN Y H, LI F J, LIANG J Y, et al. Space Structure and Clustering of Categorical Data [J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(10): 2047-2059. doi: 10.1109/TNNLS.2015.2451151
|
CAO J, ZHENG Q, WENG N, et al. Low Dimensional Representation of Space Structure and Clustering of Categorical Data [C] //IEEE International Conference on Ubiquitous Computing. New York: IEEE Press, 2018: 1079-1086.
|
王齐, 钱宇华, 李飞江.基于空间结构的符号数据仿射传播算法[J].模式识别与人工智能, 2016, 29(12): 1132-1139.
|
HUANG D, WANG C D, WU J S, et al. Ultra-Scalable Spectral Clustering and Ensemble Clustering [J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(6): 1212-1226. doi: 10.1109/TKDE.2019.2903410
|
FAN Z Y, JIANG J, WENG S Q, et al. Adaptive Density Distribution Inspired Affinity Propagation Clustering [J]. Neural Computing and Applications, 2019, 31(S1): 435-445. doi: 10.1007/s00521-017-3024-6
|