范高峰.带时间约束的co-location模式挖掘[D].昆明: 云南大学, 2012.http://cdmd.cnki.com.cn/Article/CDMD-10673-1012419406.htm
WANG L Z, BAO X G, ZHOU L H, et al. Maximal Sub-prevalent Co-location Patterns and Efficient Mining Algorithms [M] //Lecture Notes in Computer Science. Cham: Springer International Publishing, 2017: 199-214.
WANG L Z, BAO X G, ZHOU L H, et al. Mining Maximal Sub-prevalent Co-location Patterns [J]. World Wide Web, 2019, 22(5): 1971-1997. doi: 10.1007/s11280-018-0646-2
HUANG Y, SHEKHAR S, XIONG H. Discovering Colocation Patterns from Spatial Data Sets: a General Approach [J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(12): 1472-1485. doi: 10.1109/TKDE.2004.90
YOO J S, SHEKHAR S, SMITH J, et al. A Partial Join Approach for Mining Co-location Patterns [C] //Proceedings of the 12th annual ACM international workshop on Geographic information systems - GIS '04. November 12-13, 2004. Washington DC, USA. New York: ACM Press, 2004: 241-249.
YOO J S, SHEKHAR S. A Joinless Approach for Mining Spatial Colocation Patterns [J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(10): 1323-1337. doi: 10.1109/TKDE.2006.150
WANG L Z, BAO Y Z, LU J, et al. A New Join-less Approach for Co-location Pattern Mining [C] //2008 8th IEEE International Conference on Computer and Information Technology. July 8-11, 2008, Sydney, NSW, Australia. IEEE, 2008: 197-202.
WANG L Z, BAO Y Z, LU Z Y. Efficient Discovery of Spatial Co-Location Patterns Using the iCPI-tree [J]. The Open Information Systems Journal, 2009, 3(2): 69-80.
WANG L Z, ZHOU L H, LU J, et al. An Order-clique-based Approach for Mining Maximal Co-locations [J]. Information Sciences, 2009, 179(19): 3370-3382. doi: 10.1016/j.ins.2009.05.023
王晓璇, 王丽珍, 陈红梅, 等.基于特征效用参与率的空间高效用co-location模式挖掘方法[J].计算机学报, 2019, 42(8): 1721-1738.
LIU Z, HUANG Y. Mining Co-locations under Uncertainty [M] //Advances in Spatial and Temporal Databases. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 429-446.
雷乐, 王丽珍, 肖清.空间co-location模式挖掘中的模糊技术初探[J].计算机工程与应用, 2019, 55(21): 158-166.
YOO J S, SHEKHAR S, KIM S, et al. Discovery of Co-evolving Spatial Event Sets [C] //Proceedings of the 2006 SIAM International Conference on Data Mining. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2006: 306-315.
CELIK M, SHEKHAR S, ROGERS J P, et al. Mixed-Drove Spatiotemporal Co-Occurrence Pattern Mining [J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(10): 1322-1335. doi: 10.1109/TKDE.2008.97
CELIK M, SHEKHAR S, ROGERS J P, et al. Mining at most Top-K% Mixed-drove Spatio-temporal Co-occurrence Patterns: a Summary of Results [C] //2007 IEEE 23rd International Conference on Data Engineering Workshop. April 17-20, 2007, Istanbul, Turkey. IEEE, 2007: 565-574.
CELIK M. Discovering Partial Spatio-temporal Co-occurrence Patterns [C] //Proceedings 2011 IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services. June 29 - July 1, 2011, Fuzhou, China. IEEE, 2011: 116-120.
QIAN F, YIN L, HE Q M, et al. Mining Spatio-temporal Co-location Patterns with Weighted Sliding Window [C] //2009 IEEE International Conference on Intelligent Computing and Intelligent Systems. November 20-22, 2009, Shanghai, China. IEEE, 2009: 181-185.
HUO J T, ZHANG J Z, MENG X F. On Co-occurrence Pattern Discovery from Spatio-temporal Event Stream [M] //Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 385-395.
YANG L, WANG L Z. Mining Traffic Congestion Propagation Patterns Based on Spatio-temporal Co-location Patterns [J]. Evolutionary Intelligence, 2020, 13(2): 221-233. doi: 10.1007/s12065-019-00332-4
马董, 陈红梅, 王丽珍, 等.空间亚频繁co-location模式的主导特征挖掘[J].计算机应用, 2020, 40(2): 465-472.