龙怡希, 任晓霞, 张皓. ZnS类石墨烯热膨胀系数、弹性模量以及有效电荷变化规律研究[J].西南师范大学学报(自然科学版), 2019, 44(9): 21-26.
申凤娟, 郑瑞伦.非简谐振动和吸附对金属基外延石墨烯吸附系统电导率的影响[J].西南大学学报(自然科学版), 2019, 41(11): 64-72.
RAMAKRISHNA MATTE H, GOMATHI A, MANNA A, et al. MoS2 and WS2 Analogues of Graphene[J]. Angewandte Chemie International Edition, 2010, 49(24): 4059-4062. doi: 10.1002/anie.201000009
LI D, KANER R B. MATERIALS SCIENCE: Graphene-Based Materials[J]. Science, 2008, 320(5880): 1170-1171. doi: 10.1126/science.1158180
YUN C, FENG Y B, QIU T, et al. Mechanical, Electrical, and Thermal Properties of Graphene Nanosheet/aluminum Nitride Composites[J]. Ceramics International, 2015, 41(7): 8643-8649. doi: 10.1016/j.ceramint.2015.03.075
TUMMALA R R. Ceramic and Glass-Ceramic Packaging in the 1990s[J]. Journal of the American Ceramic Society, 1991, 74(5): 895-908. doi: 10.1111/j.1151-2916.1991.tb04320.x
TURAN S, CINAR A, KAYA P. Microstructure-Thermal Conductivity Relationship in Pressureles Sintered AlN Ceramics for Energy Applications[C] //European Microscopy Congress 2016: Proceedings. Weinheim Germany: Willey-VCH Verlag GmbH & Co KGaA, 2016: 924-925.
JANKOWSKI K, RUTKOWSKI P, KATA D, et al. Microstructural Analysis of Aluminum Nitride-GPLS Composites[J]. Ceramics International, 2016, 42(7): 9025-9031. doi: 10.1016/j.ceramint.2016.02.143
ZENG Q, CHEN Z L, ZHAO Y, et al. Graphene-assisted Growth of High-quality AlN by Metalorganic Chemical Vapor Deposition[J]. Japanese Journal of Applied Physics, 2016, 55(8): 085501-1-085501-5.
GEIM A K, GRIGORIEVA I V. Van Der Waals Heterostructures[J]. Nature, 2013, 499(7459): 419-425. doi: 10.1038/nature12385
SINGH A K, ZHUANG H L, HENNIG R G. Ab Initiosynthesis of Single-layer Ⅲ-Ⅴ Materials[J]. Physical Review B, 2014, 89(24): 245431-1-245431-10.
DARVISH G M, DALIRANDEH Z, KHOSRAVI A, et al. Aluminum Nitride Graphene for DMMP Nerve Agent Adsorption and Detection[J]. Materials Chemistry and Physics, 2014, 145(1-2): 260-267. doi: 10.1016/j.matchemphys.2014.02.021
CAMACHO-MOJICA D C, LÓPEZ-URÍAS F. Extended Line Defects in BN, GaN, and AlN Semiconductor Materials: Graphene-like Structures[J]. Chemical Physics Letters, 2016, 652: 73-78. doi: 10.1016/j.cplett.2016.04.045
DAVYDOV S Y. On the Specific Features of the Density of States of Epitaxial Graphene Formed on Metal and Semiconductor Substrates[J]. Semiconductors, 2013, 47(1): 95-104. doi: 10.1134/S1063782613010090
DAVYDOV S YU, Вклад π-связей в эффективные заряды, энергию когезии и силовые константы графеноподобных соединений[J]. Физика твердого тела, 2016, 58(2): 392-399.
WANG X M, ZHANG L S, YANG C, et al. Estimation of Temperature-dependent Thermal Conductivity and Specific Heat Capacity for Charring Ablators[J]. International Journal of Heat and Mass Transfer, 2019, 129: 894-902. doi: 10.1016/j.ijheatmasstransfer.2018.10.014
QIAO G, LASFARGUES M, ALEXIADIS A, et al. Simulation and Experimental Study of the Specific Heat Capacity of Molten Salt Based Nanofluids[J]. Applied Thermal Engineering, 2017, 111: 1517-1522. doi: 10.1016/j.applthermaleng.2016.07.159
ORDONEZ-MIRANDA J, EZZAHRI Y, JOULAIN K, et al. Modeling of the Electrical Conductivity, Thermal Conductivity, and Specific Heat Capacity of VO2[J]. Physical Review B, 2018, 98(7): 075144. doi: 10.1103/PhysRevB.98.075144
郑瑞伦, 胡先权.固体理论及其应用[M].重庆:西南师范大学出版社, 1996: 267-271.
郑瑞伦, 胡先权.面心立方晶格的非简谐效应[J].大学物理, 1994, 13(5): 15-18.
DAVYDOV S Y. Estimating Anharmonic Characteristics of Single-sheet Graphene at High Temperatures[J]. Technical Physics Letters, 2011, 37(12): 1161-1164. doi: 10.1134/S1063785011120194
阴知见, 邵天骄, 温斌.氮化铝热膨胀系数及高温弹性系数的第一性原理研究[J].燕山大学学报, 2013, 37(1): 27-33. doi: 10.3969/j.issn.1007-791X.2013.01.005
郭连权, 张智勇, 刘嘉慧. A1N晶体声子谱及其热学性能的第一原理计算[J].沈阳工业大学学报, 2013, 35(6): 630-634.