SCHMAEDEKE W W. Optimal Control Theory for Nonlinear Vector Differential Equations Containing Measures[J]. Journal of the Society for Industrial and Applied Math, 1965, 3(2): 231-280.
MOHANA RAO M R, HARI RAO V S. Stability of Impulsively Perturbed Systems[J]. Bull Austral Math Soc, 1977, 16(1): 99-110. doi: 10.1017/S0004972700023054
PANDIT S G. Differential Systems with Impulsive Perturbations[J]. J Pacific Math, 1980, 86(2): 553-560. doi: 10.2140/pjm.1980.86.553
徐远通.泛函微分方程与测度微分方程[M].广州:中山大学出版社, 1988.
FEDERSON M, MESQUITA J G, TOON E. Lyapunov Theorems for Measure Functional Differential Equations via Kurzweil Equations[J]. Math Nachr, 2015, 288(13): 1487-1511. doi: 10.1002/mana.201300219
FEDERSON M, GRAU R, MESQUITA J G, et al. Lyapunov Stability for Measure Differential Equations and Dynamic Equations on Time Scales[J]. Journal of Differential Equations, 2019, 267(7): 4192-4223. doi: 10.1016/j.jde.2019.04.035
GAISHUN I V, KNYAZHISHCHE L B. Nonmonotone Lyapunov Functionals. Conditions for the Stability of Equations with Delay[J]. Differ Uravn, 1994, 30(8): 1291-1298.
KNYAZHISHCHE L B. Nonmonotone Lyapunov Functional in Uniform Asymptotic Stability Analysis of Delay Equations[J]. Differ Uravn, 2002, 38(7): 882-889. doi: 10.1023/A%3A1021195211032
KNYAZHISHCHE L B, SHCHEGLOV V A. Conditions for the Uniform Asymptotic Stability of Equations with Delay[J]. Differ Uravn, 2001, 37(5): 628-637.
王春生, 李永明.多变时滞Volterra型动力系统的稳定性[J].西南大学学报(自然科学版), 2019, 41(7): 62-69.
梁桂珍, 郝林莉.一类潜伏期和染病期均传染的SEIQR流行病模型的稳定性[J].西南师范大学学报(自然科学版), 2020, 45(3): 1-9.
HATVANI L. On the Asymptotic Stability for Nonautonomous Functional Differential Equations by Lyapunov Functionals[J]. Trans Amer Math Soc, 2002, 354(9): 3555-3571. doi: 10.1090/S0002-9947-02-03029-5
AFONSO S M, BONOTTO E M, FEDERSON M, et al. Stability of Functional Differential Equations with Variable Impulsive Perturbations via Generalized Ordinary Differential Equations[J]. Bull Sci Math, 2013, 137(2): 189-214. doi: 10.1016/j.bulsci.2012.10.001
FEDERSON M, FRASSON M, MESQUITA J G, et al. Measure Neutral Functional Differential Equations as Generalized ODEs[J]. J Dyn Diff Equat, 2019, 31(1): 207-236. doi: 10.1007/s10884-018-9682-y
SCHWABIK S. Generalized Ordinary Differential Equations[M]. Singapore: World Scientific, 1992: 1-111.
SCHWABIK S. Variational Stability for Generalized Ordinary Differential Equations[J]. Casopis Pro Pestovani Matematilky, 1984, 109(4): 389-420.