BÖRÖCZKY K J, LUTWAK E, YANG D, et al. The Logarithmic Minkowski Problem [J]. J Amer Math Soc, 2013, 26(3): 831-852.
BÖRÖCZKY K J, HENK M. Cone-Volume Measure of General Centered Convex Bodies [J]. Adv Math, 2016, 286: 703-721. doi: 10.1016/j.aim.2015.09.021
BÖRÖCZKY K J, LUTWAK E, YANG D, et al. The Log-Brunn-Minkowski Inequality [J]. Adv Math, 2012, 231(3-4): 1974-1997. doi: 10.1016/j.aim.2012.07.015
BÖRÖCZKY K J, LUTWAK E, YANG D, et al. Affine Images of Isotropic Measures [J]. J Differ Geom, 2015, 99(3): 407-442.
HU J Q, XIONG G. The Logarithmic John Ellipsoid [J]. Gemo Dedic, 2018, 197(1): 33-48. doi: 10.1007/s10711-017-0316-z
HENK M, LINKE E. Cone-Volume Measures of Polytopes [J]. Adv Math, 2014, 253: 50-62. doi: 10.1016/j.aim.2013.11.015
BÖRÖCZKY K J, HENK M. Cone-Volume Measure and Stability [J]. Adv Math, 2017, 306: 24-50. doi: 10.1016/j.aim.2016.10.005
LUTWAK E, YANG D, ZHANG G Y. Lp John Ellipsoids [J]. Proc Lond Math Soc, 2005, 90(2): 497-520. doi: 10.1112/S0024611504014996
SONG J L. A Sharp Dual Lp John Ellipsoid Problem for p≤-n-1 [J]. Beitr Algebra Geom, 2019, 60: 709-732. doi: 10.1007/s13366-019-00444-z
HU J Q, XIONG G. A New Affine Invariant Geometric Functional for Polytopes and Its Associated Affine Isoperimetric Inequalities [J]. Int Math Res, 2019, 2019: 1-19. doi: 10.1093/imrn/rnx109
FLEISCHER I. The Divergence Theorem and Sets of Finite Perimeter [M]. Boca Raton: CRC Press, 2012.
GUSEYNOU Y. Integrable Boundaries and Fractals for Hölder Classes; the Gauss-Green Theorem [J]. Calculus of Variations, 2016, 55: 103. doi: 10.1007/s00526-016-1031-6