TATOM F B. The Relationship Between Fractional Calculus and Fractals[J]. Fractals, 1995, 3(1): 217-229. doi: 10.1142/S0218348X95000175
|
ROCCO A, WEST B J. Fractional Calculus and the Evolution of Fractal Phenomena[J]. Physica A: Statistical Mechanics and Its Applications, 1999, 265(3-4): 535-546. doi: 10.1016/S0378-4371(98)00550-0
|
DAS S. Functions Used in Fractional Calculus[M]//Functional Fractional Calculus for System Identification and Controls. Berlin: Springer Berlin Heidelberg, 2008: 19-34.
|
PODLUBNY I. Fractional Differential Equations[M]. San Diego: Academic Press, 1999.
|
DIETHELM K. Multi-Term Caputo Fractional Differential Equations[M]//Lecture Notes in Mathematics. Berlin: Springer Berlin Heidelberg, 2010: 167-186.
|
KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Preface[M]//Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier, 2006.
|
QI H T, JIN H. Unsteady Rotating Flows of a Viscoelastic Fluid with the Fractional Maxwell Model Between Coaxial Cylinders[J]. Acta Mechanica Sinica, 2006, 22(4): 301-305. doi: 10.1007/s10409-006-0013-x
|
陈宏善, 侯婷婷, 冯养平. 聚合物物理老化的分数阶模型[J]. 中国科学: 物理学力学天文学, 2010, 40(10): 1267-1274.
|
DEBNATH L. Recent Applications of Fractional Calculus to Science and Engineering[J]. International Journal of Mathematics and Mathematical Sciences, 2003, 2003(54): 3413-3442. doi: 10.1155/S0161171203301486
|
DENG W H. Short Memory Principle and a Predictor-Corrector Approach for Fractional Differential Equations[J]. Journal of Computational and Applied Mathematics, 2007, 206(1): 174-188. doi: 10.1016/j.cam.2006.06.008
|
MONJE C A, CHEN Y Q, VINAGRE B M, et al. Fractional-Order Systems and Controls[M]. London: Springer London, 2010.
|
SHI M, WANG Z H, DU M L. A Modified Multi-Step Differential Transform Method for Solving Fractional Dynamic Systems[J]. Journal of Computational and Nonlinear Dynamics, 2013, 8(1): 011008.
|
GVLSU M, ÖZTVRK Y, ANAPAL A. Numerical Approach for Solving Fractional Relaxation-Oscillation Equation[J]. Applied Mathematical Modelling, 2013, 37(8): 5927-5937. doi: 10.1016/j.apm.2012.12.015
|
WEI S, CHEN W. A Matlab Toolbox for Fractional Relaxation-Oscillation Equations[EB/OL]. (2013-02-14)[2018-12-25]. https://arxiv.org/abs/1302.3384.
|
LAKSHMIKANTHAM V, VATSALA A S, Theory of Fractional Differential Inequalities and Applications[J]. Communications in Applied Analysis, 2007, 11(3): 395-402.
|
DRICI Z, MCRAE F A, DEVI J V. Fractional Differential Equations Involving Causal Operators[J]. Communications in Applied Analysis, 2010, 14(1): 81-88.
|
WANG G T, BALEANU D, ZHANG L H. Monotone Iterative Method for a Class of Nonlinear Fractional Differential Equations[J]. Fractional Calculus and Applied Analysis, 2012, 15(2): 244-252.
|
LAKSHMIKANTHAM V, LEELA S, DEVI J V. Theory of Fractional Dynamic Systems[M]. Cambridge: Cambridge Academic Publishers, 2009.
|
YAKAR A. Some Generalizations of Comparison Results for Fractional Differential Equations[J]. Computers & Mathematics With Applications, 2011, 62(8): 3215-3220.
|
YAKAR A. Initial Time Difference Quasilinearization for Caputo Fractional Differential Equations[J]. Advances in Difference Equations, 2012, 2012(1): 1-9.
|
KING A C, BILLINGHAM J, OTTO S R. Differential Equations[M]. Cambridge: Cambridge University Press, 2003.
|
胡桐春, 钱德亮, 李常品. 分数阶微分方程的比较定理[J]. 应用数学与计算数学学报, 2009, 23(1): 97-103. doi: 10.3969/j.issn.1006-6330.2009.01.014
|
陈清明, 姜学源. 广义积分中值定理[J]. 西南师范大学学报(自然科学版), 2013, 38(8): 169-172. doi: 10.3969/j.issn.1000-5471.2013.08.034
|
POLLARD H. The Completely Monotonic Character of the Mittag-Leffler Function Ea({- x})[J]. Bulletin of the American Mathematical Society, 1948, 54(12): 1115-1117.
|
MAINARDI F. Fractional Relaxation-Oscillation and Fractional Diffusion-Wave Phenomena[J]. Chaos, Solitons & Fractals, 1996, 7(9): 1461-1477.
|
陈文, 孙洪广, 李西成. 力学与工程问题的分数阶导数建模[M]. 北京: 科学出版社, 2010.
|