KELLER E F, SEGEL L A. Initiation of Slime Mold Aggregation Viewed asan Instability [J]. Journal of Theoretical Biology, 1970, 26(3): 399-415. doi: 10.1016/0022-5193(70)90092-5
PAINTER K J, HILLEN T. Volume-Filling and Quorum-Sensing in Models for Chemosensitive Movement [J]. Canadian Applied Mathematics Quarterly, 2002, 10(4): 501-543.
张颖, 赵志新, 张优佳, 等. 一类拟线性抛物-椭圆趋化增长系统解的全局有界性[J]. 西南师范大学学报(自然科学版), 2019, 44(1): 34-39.
CIEŚLAK T. Global Existence of Solutions to a Chemotaxis System with Volume Filling Effect [J]. Colloquium Mathematicum, 2008, 111(1): 117-134. doi: 10.4064/cm111-1-11
LIUD M, TAO Y S. Global Boundedness in a Fully Parabolic Attraction-Repulsion Chemotaxis Model [J]. Mathematical Methods in the Applied Sciences, 2015, 38(12): 2537-2546. doi: 10.1002/mma.3240
OSAKI K, YAGI A. Finite Dimensional Attractors for One-Dimensional Keller-Segel Equations [J]. Funkcialaj Ekvacioj, 2001, 44(3): 441-469.
NAGAI T. Blow-up of Radially Symmtetric Solutions to a Chemotaxis Systems [J]. Advances in Applied Mathematics, 1995, 5(2): 581-601.
NAGAI T. Blowup of Nonradial Solutions to Parabolic-Elliptic Systems Modeling Chemotaxis in Two-Dimensional Domains [J]. Journal of Inequalities and Applications, 2001, 2001(1): 970292. doi: 10.1155/S1025583401000042
NAGAI T, SENBA T, YOSHIDA K. Application of the Trudinger-Moser Inequality to a Parabolic System of Chemotaxis [J]. Funkcialaj Ekvacioj, 1997, 40(3): 411-433.
CORRIAS L, PERTHAME B, ZAAG H. Global Solutions ofsome Chemotaxis and Angiogenesis Systems in High Space Dimensions [J]. Milan Journal of Mathematics, 2004, 72(1): 1-28. doi: 10.1007/s00032-003-0026-x
KOWALCZYK R, SZYMAŃSKA Z. On the Global Existence of Solutions to an Aggregation Model [J]. Journal of Mathematical Analysis and Applications, 2008, 343(1): 379-398. doi: 10.1016/j.jmaa.2008.01.005
STROHM S, TYSON R C, POWELL J A. Pattern Formation in a Model for Mountain Pine Beetle Dispersal: Linking Model Predictions to Data [J]. Bulletin of Mathematical Biology, 2013, 75(10): 1778-1797. doi: 10.1007/s11538-013-9868-8
王笑丹, 陶有山. 具间接信号产出的二维趋向性模型古典解的整体存在性和有界性[J]. 东华大学学报(自然科学版), 2016, 42(6): 922-930. doi: 10.3969/j.issn.1671-0444.2016.06.023
TELLO J I, WINKLER M. A Chemotaxis System with Logistic Source [J]. Communications in Partial Differential Equations, 2007, 32(6): 849-877. doi: 10.1080/03605300701319003
QIUS Y, MU C L, WANG L C. Boundedness in the Higher-Dimensional Quasilinear Chemotaxis-Growth System with Indirect Attractant Production [J]. Computers & Mathematics With Applications, 2018, 75(9): 3213-3223.
HORSTMANN D, WINKLER M. BoundednessVs. Blow-up in a Chemotaxis System [J]. Journal of Differential Equations, 2005, 215(1): 52-107. doi: 10.1016/j.jde.2004.10.022
LAURENCOT P, WRZOSEK D. A Chemotaxis Model with Threshold Density and Degenerate Diffusion [M] // CHIPOT M, ESCHER J. Nonlinear Elliptic and Parabolic Problems. Berlin: Birkhäuser Basel, 2006.
KOWALCZYK R. Preventing Blow-up in a Chemotaxis Model [J]. Journal of Mathematical Analysis and Applications, 2005, 305(2): 566-588. doi: 10.1016/j.jmaa.2004.12.009