ZHU K H. Operator Theory in Function Spaces[M]. 2th ed. New York: American Mathematical Soc, 1990.
|
DING X H, SANG Y Q. Dual Truncated Toeplitz Operators[J]. Journal of Mathematical Analysis and Applications, 2018, 461: 929-946. doi: 10.1016/j.jmaa.2017.12.032
|
LI Y N, SANG Y Q, DING X H. The Commutant and Invariant Subspaces for Dual Truncated Toeplitz Operators[J]. Banach Journal of Mathematical Analysis, 2020, 15(1): 1-26.
|
SANG Y Q, QIN Y S, DING X H. A Theorem of Brown-Halmos Type for Dual Truncated Toeplitz Operators[J]. Annals of Functional Analysis, 2020, 11(2): 271-284. doi: 10.1007/s43034-019-00002-7
|
HANKEL H. Veber Eine Besondre Classe Der Symmetrishchen Determinanten[D]. Göttingen: Universitas Regiae Georgiae, 1861.
|
KRONECKER L. Zur Theorie Der Elimination Einer Variablen Aus Zwei Algebraischen Gleichungen[J]. Monatsber Königl Preussischen Akad Wiss, 1881, 1881: 535-600.
|
NEHARI Z. On Bounded Bilinear Forms[J]. The Annals of Mathematics, 1957, 65(1): 153-162. doi: 10.2307/1969670
|
FRANCIS B A. A Course in H∞ Control Theory[M]. Berlin: Springer, 1987.
|
POWER S C. Hankel Operators on Hilbert Space[M]. London: Pitman Advanced Publishing Program, 1982.
|
HARTMAN P. On Completely Continuous Hankel Matrices[J]. Proceedings of the American Mathematical Society, 1958, 9(6): 862-866. doi: 10.1090/S0002-9939-1958-0108684-8
|
PELLER V V. Hankel Operators of Class Cp and Their Applications (Rational Approximation, Gaussian Processes, The Problem of Majarizing Operaotors)[J]. Math USSR Sbornik, 1982, 41(4): 443-479. doi: 10.1070/SM1982v041n04ABEH002242
|
PELLER V V. A Description of Hankel Operators of Class Sp for p>0, An Investigation of the Rate of Rational Approximation, and Other Applications[J]. Math USSR Sbornik, 1985, 50(2): 465-494. doi: 10.1070/SM1985v050n02ABEH002840
|
SEMMES S. Trace Ideal Criteria for Hankel Operators, and Applications to Besov Spaces[J]. Integr Equ Oper Theory, 1984, 7(2): 241-281. doi: 10.1007/BF01200377
|
ROCHBERG R. Trace Ideal Criteria for Hankel Operators and Commutators[J]. Indiana Univ Math J, 1982, 31(6): 931-925.
|
SARASON D. Function Theory on The Unit Circle[M]. Blacksburg: Virginia Polytechnic Institute and State University, 1979.
|
PARTINGTON J R. An Introduction to Hankel Operators[M]. Cambridge: Cambridge University Press, 1988.
|
PELLER V V. Hankel Operators and Their Applications[M]. Berlin: Springer, 2003.
|