彭稳, 钟丽萍, 刘航, 等. 有机污染物选择性光催化研究进展[J]. 水处理技术, 2017, 43(4): 1-5, 10.
任南琪, 周显娇, 郭婉茜, 等. 染料废水处理技术研究进展[J]. 化工学报, 2013, 64(1): 84-94. doi: 10.3969/j.issn.0438-1157.2013.01.011
杨静静, 韦莹莹, 何勇平, 等. SiC/BiVO4复合材料光催化降解亚甲基蓝[J]. 西南师范大学学报(自然科学版), 2018, 43(5): 31-36.
CHEN C C, MA W H, ZHAO J C. Semiconductor-Mediated Photodegradation of Pollutants under Visible-Light Irradiation[J]. Chemical Society Reviews, 2010, 39(11): 4206-4219 doi: 10.1039/b921692h
TADA H, KIYONAGA T, NAYA S I. Rational Design and Applications of Highly Efficient Reaction Systems Photocatalyzed by Noble Metal Nanoparticle-Loaded Titanium(Ⅳ) Dioxide[J]. Chemical Society Reviews, 2009, 38(7): 1849-1858. doi: 10.1039/b822385h
TAN C, CAO X, WU X J, et al. Recent Advances in Ultrathin Two-Dimensional Nanomaterials[J]. Chemical Reviews, 2017, 117(9): 6225-6331. doi: 10.1021/acs.chemrev.6b00558
ZHANG H. Ultrathin Two-Dimensional Nanomaterials[J]. ACS Nano, 2015, 9(10): 9451-9469. doi: 10.1021/acsnano.5b05040
GAN X R, LEI D Y, WONG K Y. Two-Dimensional Layered Nanomaterials for Visible-Light-Driven Photocatalytic Water Splitting[J]. Materials Today Energy, 2018, 10: 352-367 doi: 10.1016/j.mtener.2018.10.015
SUN Z, CHANG H. Graphene and Graphene-Like Two-Dimensional Materials in Photodetection: Mechanisms and Methodology[J]. ACS Nano, 2014, 8(5): 4133-4156. doi: 10.1021/nn500508c
MARLINDA A R, YUSOFF N, SAGADEVAN S, et al. Recent Developments in Reduced Graphene Oxide Nanocomposites for Photoelectrochemical Water-Splitting Applications[J]. International Journal of Hydrogen Energy, 2020, 45(21): 11976-11994. doi: 10.1016/j.ijhydene.2020.02.096
BUSTOS-RAMÍREZ K, BARRERA-DÍAZ C E, DE ICAZA-HERRERA M, et al. 4-Chlorophenol Removal from Water Using Graphite and Graphene Oxides as Photocatalysts[J]. Journal of Environmental Health Science and Engineering, 2015, 13(1): 1-11. doi: 10.1186/s40201-015-0157-3
KUMAR S, KUMAR A. ChemicallyDerived Luminescent Graphene Oxide Nanosheets and Its Sunlight Driven Photocatalytic Activity Against Methylene Blue Dye[J]. Optical Materials, 2016, 62: 320-327. doi: 10.1016/j.optmat.2016.10.014
SUN H, LIU S, ZHOU G, et al. Reduced Graphene Oxide for Catalytic Oxidation of Aqueous Organic Pollutants[J]. ACS Applied Materials & Interfaces, 2012, 4(10): 5466-5471.
ZHANG S, LI B F, WANG X X, et al. Recent Developments of Two-Dimensional Graphene-Based Composites in Visible-Light Photocatalysis for Eliminating Persistent Organic Pollutants from Wastewater[J]. Chemical Engineering Journal, 2020, 390: 124642-1-124642-24.
SUN L L, WANG G H, HAO R R, et al. Solvothermal Fabrication and Enhanced Visible Light Photocatalytic Activity of Cu2O-Reduced Graphene Oxide Composite Microspheres for Photodegradation of Rhodamine B[J]. Applied Surface Science, 2015, 358: 91-99. doi: 10.1016/j.apsusc.2015.08.128
WEI Q, WANG Y, QIN H Y, et al. Construction of rGO Wrapping Octahedral Ag-Cu2O Heterostructure for Enhanced Visible Light Photocatalytic Activity[J]. Applied Catalysis B: Environmental, 2018, 227: 132-144. doi: 10.1016/j.apcatb.2018.01.003
ALEKSANDRZAK M, KUKULKA W, MIJOWSKA E. GraphiticCarbon Nitride/Graphene Oxide/Reduced Graphene Oxide Nanocomposites for Photoluminescence and Photocatalysis[J]. Applied Surface Science, 2017, 398: 56-62. doi: 10.1016/j.apsusc.2016.12.023
LIU X J, PAN L K, LV T, et al. Visible Light Photocatalytic Degradation of Dyes by Bismuth Oxide-Reduced Graphene Oxide Composites Prepared via Microwave-Assisted Method[J]. Journal of Colloid and Interface Science, 2013, 408: 145-150. doi: 10.1016/j.jcis.2013.07.045
THOMAS A, FISCHER A, GOETTMANN F, et al. GraphiticCarbon Nitride Materials: Variation of Structure and Morphology and Their Use as Metal-Free Catalysts[J]. Journal of Materials Chemistry, 2008, 18(41): 4893-4908 doi: 10.1039/b800274f
HUANG D L, LI Z H, ZENG G M, et al. Megamerger in Photocatalytic Field: 2D G-C3N4 Nanosheets Serve as Support of 0D Nanomaterials for Improving Photocatalytic Performance[J]. Applied Catalysis B: Environmental, 2019, 240: 153-173. doi: 10.1016/j.apcatb.2018.08.071
YAN S C, LI Z S, ZOU Z G. PhotodegradationPerformance of G-C3N4 Fabricated by Directly Heating Melamine[J]. Langmuir, 2009, 25(17): 10397-10401. doi: 10.1021/la900923z
ZHAO H X, YU H T, QUAN X, et al. Atomic Single Layer Graphitic-C3N4: Fabrication and Its High Photocatalytic Performance under Visible Light Irradiation[J]. RSC Advances, 2014, 4(2): 624-628. doi: 10.1039/C3RA45776A
HE Y Q, MA Z Y, BINNAH L Jr. Distinctive Binary G-C3N4/MoS2 Heterojunctions with Highly Efficient Ultrasonic Catalytic Degradation for Levofloxacin and Methylene Blue[J]. Ceramics International, 2020, 46(8): 12364-12372. doi: 10.1016/j.ceramint.2020.01.287
ZHU C Z, JIANG Z F, WEI W, et al. Fabrication of Noble-Metal-Free NiS2/g-C3N4 Hybrid Photocatalysts with Visible Light-Responsive Photocatalytic Activities[J]. Research on Chemical Intermediates, 2016, 42(8): 6483-6499. doi: 10.1007/s11164-016-2475-1
LU N, WANG P, SU Y, et al. Construction of Z-SchemeG-C3N4/RGO/WO3 with in Situ Photoreduced Graphene Oxide as Electron Mediator for Efficient Photocatalytic Degradation of Ciprofloxacin[J]. Chemosphere, 2019, 215: 444-453. doi: 10.1016/j.chemosphere.2018.10.065
CHEN D M, WANG K W, XIANG D G, et al. Significantly Enhancement of Photocatalytic Performances via Core-Shell Structure of ZnO@mpg-C3N4[J]. Applied Catalysis B: Environmental, 2014, 147: 554-561. doi: 10.1016/j.apcatb.2013.09.039
JIANG Z, ZHU C, WAN W, et al. Constructing graphite-like carbon nitride modified hierarchical yolk-shell TiO2 spheres for water pollution treatment and hydrogen production[J]. Journal of Materials Chemistry A, 2016, 4(5): 1806-1818. doi: 10.1039/C5TA09919F
CHEN S F, HU Y F, MENG S G, et al. Study on the Separation Mechanisms of Photogenerated Electrons and Holes for Composite Photocatalysts G-C3N4-WO3[J]. Applied Catalysis B: Environmental, 2014, 150-151: 564-573. doi: 10.1016/j.apcatb.2013.12.053
WANG J, XIA Y, ZHAO H Y, et al. Oxygen Defects-Mediated Z-Scheme Charge Separation in G-C3N4/ZnO Photocatalysts for Enhanced Visible-Light Degradation of 4-Chlorophenol and Hydrogen Evolution[J]. Applied Catalysis B: Environmental, 2017, 206: 406-416. doi: 10.1016/j.apcatb.2017.01.067
HONG Y Z, JIANG Y H, LI C S, et al. In-Situ Synthesis of Direct Solid-State Z-Scheme V2O5/g-C3N4 Heterojunctions with Enhanced Visible Light Efficiency in Photocatalytic Degradation of Pollutants[J]. Applied Catalysis B: Environmental, 2016, 180: 663-673. doi: 10.1016/j.apcatb.2015.06.057
SUDHAIK A, RAIZADA P, SHANDILYA P, et al. Review onFabrication of Graphitic Carbon Nitride Based Efficient Nanocomposites for Photodegradation of Aqueous Phase Organic Pollutants[J]. Journal of Industrial and Engineering Chemistry, 2018, 67: 28-51. doi: 10.1016/j.jiec.2018.07.007
ZHANG H H, HAN X X, YU H J, et al. Enhanced Photocatalytic Performance of Boron and Phosphorous Co-Doped Graphitic Carbon Nitride Nanosheets for Removal of Organic Pollutants[J]. Separation and Purification Technology, 2019, 226: 128-137. doi: 10.1016/j.seppur.2019.05.066
JIN J, LIANG Q, DING C Y, et al. Simultaneous Synthesis-Immobilization of Ag Nanoparticles Functionalized 2D G-C3N4 Nanosheets with Improved Photocatalytic Activity[J]. Journal of Alloys and Compounds, 2017, 691: 763-771. doi: 10.1016/j.jallcom.2016.08.302
LI L K, YU Y J, YE G J, et al. Black Phosphorus Field-Effect Transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377. doi: 10.1038/nnano.2014.35
RAHMAN M Z, KWONG C W, DAVEY K, et al. 2DPhosphorene as a Water Splitting Photocatalyst: Fundamentals to Applications[J]. Energy & Environmental Science, 2016, 9(3): 709-728.
WANG H, YANG X, SHAO W, et al. Ultrathin Black Phosphorus Nanosheets for Efficient Singlet Oxygen Generation[J]. Journal of the American Chemical Society, 2015, 137(35): 11376-11382. doi: 10.1021/jacs.5b06025
WANG H, ZHANG X D, XIE Y. Photocatalysis in Two-Dimensional Black Phosphorus: The Roles of Many-Body Effects[J]. ACS Nano, 2018, 12(10): 9648-9653. doi: 10.1021/acsnano.8b06723
CASTELLANOS-GOMEZ A. Black Phosphorus: Narrow Gap, Wide Applications[J]. The Journal of Physical Chemistry Letters, 2015, 6(21): 4280-4291. doi: 10.1021/acs.jpclett.5b01686
WANG X, ZHOU B Q, ZHANG Y M, et al. In-Situ Reduction and Deposition of Ag Nanoparticles on Black Phosphorus Nanosheets Co-Loaded with Graphene Oxide as a Broad Spectrum Photocatalyst for Enhanced Photocatalytic Performance[J]. Journal of Alloys and Compounds, 2018, 769: 316-324 doi: 10.1016/j.jallcom.2018.08.008
YOU H, JIA Y, WU Z, et al. Room-Temperature Pyro-Catalytic Hydrogen Generation of 2D Few-Layer Black Phosphorene under Cold-Hot Alternation[J]. Nature Communications, 2018, 9(1): 2889-1-2889-8.
LEE H U, LEE S C, WON J, et al. StableSemiconductor Black Phosphorus (BP)@titanium Dioxide (TiO2) Hybrid Photocatalysts[J]. Scientific Reports, 2015, 5: 08691-1-08691-6.
LI S T, WANG P F, WANG R D, et al. One-Step Co-Precipitation Method to Construct Black Phosphorus Nanosheets/ZnO Nanohybrid for Enhanced Visible Light Photocatalytic Activity[J]. Applied Surface Science, 2019, 497: 143682-1-143682-10.
CHEN P, GUO Z, CUI K P, et al. Photo-Induced Degradation of Norfloxacin by Nanosilver Modified Two-Dimensional Black Phosphorus[J]. Solid State Sciences, 2020, 103: 106188-1-106188-8.
ZHU M S, OSAKADA Y, KIM S, et al. Black Phosphorus: a Promising Two Dimensional Visible and Near-Infrared-Activated Photocatalyst for Hydrogen Evolution[J]. Applied Catalysis B: Environmental, 2017, 217: 285-292. doi: 10.1016/j.apcatb.2017.06.002
YU S J, WANG X X, PANG H W, et al. Boron Nitride-Based Materials for the Removal of Pollutants from Aqueous Solutions: a Review[J]. Chemical Engineering Journal, 2018, 333: 343-360. doi: 10.1016/j.cej.2017.09.163
ZHOU C Y, LAI C, ZHANG C, et al. Semiconductor/Boron Nitride Composites: Synthesis, Properties, and Photocatalysis Applications[J]. Applied Catalysis B: Environmental, 2018, 238: 6-18. doi: 10.1016/j.apcatb.2018.07.011
FENG C Y, TANG L, DENG Y C, et al. Enhancing Optical Absorption and Charge Transfer: Synthesis of S-Doped H-BN with Tunable Band Structures for Metal-Free Visible-Light-Driven Photocatalysis[J]. Applied Catalysis B: Environmental, 2019, 256: 117827-1-117827-9.
SHAHABUDDIN S, KHANAM R, KHALID M, et al. Synthesis of 2DBoron Nitride Doped Polyaniline Hybrid Nanocomposites for Photocatalytic Degradation of Carcinogenic Dyes from Aqueous Solution[J]. Arabian Journal of Chemistry, 2018, 11(6): 1000-1016. doi: 10.1016/j.arabjc.2018.05.004
SINGH B, KAUR G, SINGH P, et al. Nanostructured BN-TiO2 Composite with Ultra-High Photocatalytic Activity[J]. New Journal of Chemistry, 2017, 41(20): 11640-11646. doi: 10.1039/C7NJ02509B
FU X L, HU Y F, ZHANG T, et al. The Role of Ball Milled H-BN in the Enhanced Photocatalytic Activity: a Study Based on the Model of ZnO[J]. Applied Surface Science, 2013, 280: 828-835. doi: 10.1016/j.apsusc.2013.05.069
YANG Y L, WU M G, ZHU X W, et al. 2020 Roadmap on Two-Dimensional Nanomaterials for Environmental Catalysis[J]. Chinese Chemical Letters, 2019, 30(12): 2065-2088. doi: 10.1016/j.cclet.2019.11.001