DING J T, KOU W. Blow-up Solutions for Reaction Diffusion Equations with Nonlocal Boundary Conditions[J]. Journal of Mathematical Analysis and Applications, 2019, 470(1): 1-15. doi: 10.1016/j.jmaa.2018.09.021
CUI Z J, YANG Z D, RUI Z. Blow-up of Solutions for Nonlinear Parabolic Equation with Nonlocal Source and Nonlocal Boundary Condition[J]. Applied Mathematics and Computation, 2013, 224: 1-8. doi: 10.1016/j.amc.2013.08.044
MARRAS M, VERNIER PIRO S. Reaction-Diffusion Problems under Non-local Boundary Conditions with Blow-up Solutions[J]. Journal of Inequalities and Applications, 2014, 167(1): 1-11.
YE Z, XU X J. Global Existence and Blow-up for a Porous Medium System with Nonlocal Boundary Conditions and Nonlocal Sources[J]. Nonlinear Analysis, 2013, 82; 115-126. doi: 10.1016/j.na.2013.01.004
PAYNE L E, PHILIPPIN G A, VERNIER PIRO S. Blow-up Phenomena for a Semilinear Heat Equation with Nonlinear Boundary Condition I[J]. Zeitschrift fur Angewandte Mathematik und Physik, 2010, 61(6): 999-1007. doi: 10.1007/s00033-010-0071-6
BREZIS H. Functional Analysis, Sobolev Spaces and Partial Differential Equations[M]. New York: Springer-Verlag, 2011: 1-599.
SHEN X H, DING J T. Blow-up Phenomena in Porous Medium Equation Systems with Nonlinear Boundary Conditions[J]. Computers and Mathematic with Applications, 2019, 77(12): 3250-3263. doi: 10.1016/j.camwa.2019.02.007
唐之韵, 欧增奇. 一类非局部问题解的存在性与多重性[J]. 西南大学学报(自然科学版), 2018, 40(4): 48-52.
GLADKOV A, GUEDDA M. Blow-up Problem for Semilinear Heat Equation with Absorption and a Nonlocal Boundary Condition[J]. Nonlinear Analysis, 2011, 74: 4573-4580. doi: 10.1016/j.na.2011.04.027
魏娟, 朱朝生. 非局部非线性Schrödinger方程组解的渐近行为[J]. 西南师范大学学报(自然科学版), 2019, 41(2): 60-63.
AHMED I, MU C, ZHENG P. Global Existence and Blow-up of Solutions for a Quasilinear Parabolic Equation with Absorption and Nonlinear Boundary Condition[J]. International Journal of Analysis and Applications, 2014, 5(2): 147-153.
赵阳洋, 崔泽建. 一类带非局部源的反应扩散方程解的整体存在与爆破[J]. 西南师范大学学报(自然科学版), 2019, 44(8): 34-38.
PROTTER M H, WEINBERGER H F. Maximum Principles in Differential Equations[M]. Englewood Cliffs: Prentice Hall, 1967.