WU W Z, LEUNG Y, MI J S. Granular Computing and Knowledge Reduction in Formal Contexts[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(10): 1461-1474. doi: 10.1109/TKDE.2008.223
仇国芳, 马建敏, 杨宏志, 等. 概念粒计算系统的数学模型[J]. 中国科学(F辑: 信息科学), 2009, 39(12): 1239-1247.
苗夺谦, 张清华, 钱宇华, 等. 从人类智能到机器实现模型——粒计算理论与方法[J]. 智能系统学报, 2016, 11(6): 743-757.
李金海, 吴伟志. 形式概念分析的粒计算方法及其研究展望[J]. 山东大学学报(理学版), 2017, 52(7): 1-12.
智慧来, 李金海. 基于必然属性分析的粒描述[J]. 计算机学报, 2018, 41(12): 2702-2719. doi: 10.11897/SP.J.1016.2018.02702
ZADEH L A. Toward a Theory of Fuzzy Information Granulation and Its Centrality in Human Reasoning and Fuzzy Logic[J]. Fuzzy Sets and Systems, 1997, 90(2): 111-127. doi: 10.1016/S0165-0114(97)00077-8
QI J J, WEI L, WAN Q. Multi-Level Granularity in Formal Concept Analysis[J]. Granular Computing, 2019, 4(3): 351-362. doi: 10.1007/s41066-018-0112-7
FUJITA H, GAETA A, LOIA V, et al. Resilience Analysis of Critical Infrastructures: A Cognitive Approach Based on Granular Computing[J]. IEEE Transactions on Cybernetics, 2019, 49(5): 1835-1848. doi: 10.1109/TCYB.2018.2815178
HOŃKO P. Recent Granular Computing Frameworks for Mining Relational Data[J]. Artificial Intelligence Review, 2019, 52(4): 2705-2742. doi: 10.1007/s10462-018-9643-1
WILLE R. Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts[M] // RIVAL I. Ordered Set. Dordrecht-Boston: Reidel, 1982: 445-470.
智慧来. 概念格构造与应用中的关键技术研究[D]. 上海: 上海大学, 2010.
YAO YY. A Comparative Study of Formal Concept Analysis and Rough Set Theory in Data Analysis[C] //Rough Sets and Current Trends in Computing (LNCS: 3066), Uppsala, Sweden, 2004: 59-68.
YAO Y Y. Concept Lattices in Rough Set Theory[C] // Proceedings of the International Conference of the North American Fuzzy Information Processing Society, IEEE, Banff, Canada, 2004: 796-801.
ZHI H L, QI J J, QIAN T, et al. Three-Way Dual Concept Analysis[J]. International Journal of Approximate Reasoning, 2019, 114: 151-165. doi: 10.1016/j.ijar.2019.08.010
YAO Y Y. Rough-Set Concept Analysis: Interpreting RS-Definable Concepts Based on Ideas from Formal Concept Analysis[J]. Information Sciences, 2016, 346/347: 442-462. doi: 10.1016/j.ins.2016.01.091
XU W H, LI W T. Granular Computing Approach to Two-Way Learning Based on Formal Concept Analysis in Fuzzy Datasets[J]. IEEE Transactions on Cybernetics, 2016, 46(2): 366-379. doi: 10.1109/TCYB.2014.2361772
SHAO M W, LEUNG Y, WANG X Z, et al. Granular Reducts of Formal Fuzzy Contexts[J]. Knowledge-Based Systems, 2016, 114: 156-166. doi: 10.1016/j.knosys.2016.10.010
李金海, 吴伟志, 邓硕. 形式概念分析的多粒度标记理论[J]. 山东大学学报(理学版), 2019, 54(2): 30-40.
ZHI H L, QI J J, QIAN T, et al. Conflict Analysis under One-Vote Veto Based on Approximate Three-Way Concept Lattice[J]. Information Sciences, 2020, 516: 316-330. doi: 10.1016/j.ins.2019.12.065
YAO Y Y. Three-Way Decision: An Interpretation of Rules in Rough Set Theory[M] //Rough Sets and Knowledge Technology Berlin, Heidelberg: Spring Berlin Heidelberg, 2009: 642-649.
QI J J, WEI L, YAO Y Y. Three-Way Formal Concept Analysis[M] //Rough Sets and Knowledge Technology Cham: Springer International Publishing, 2014: 732-741.
QI J J, QIAN T, WEI L. The Connections Between Three-Way and Classical Concept Lattices[J]. Knowledge-Based Systems, 2016, 91: 143-151. doi: 10.1016/j.knosys.2015.08.006
魏玲, 高乐, 祁建军. 三支概念分析研究现状与展望[J]. 西北大学学报(自然科学版), 2019, 49(4): 527-537.
魏玲, 赵思雨. 三支概念分析中的粒与知识结构[J]. 西北大学学报(自然科学版), 2020, 50(4): 537-545.
CROFT W, CRUSE D A. Cognitive Linguistics[M]. Cambridge: Cambridge University Press, 2004.
LAKOFF G. Women, Fire, and Dangerous Things: What Categories Reveal about the Mind[M]. Chicago: The University of Chicago Press, 1987.
智慧来, 李逸楠. 基于概念簇的知识表示[J]. 西北大学学报(自然科学版), 2020, 50(4): 529-536.