LU S Z, YANG D C. The Weighted Herz-Type Hardy Spaces and Its Applications[J]. Science in China, 1995, 38(6): 662-673.
LU S Z, YANG D C, HU G E. Herz Type Spaces and Their Applications[M]. Beijing: Science Press, 2008.
LU S Z, XU L F. Boundedness of Rough Singular Integral Operators on the Homogeneous Morrey-Herz Spaces[J]. Hokkaido Mathematical Journal, 2005, 34(2): 299-314.
李睿, 陶双平. 多线性奇异积分算子在加权Morrey-Herz空间上的有界性[J]. 西南大学学报(自然科学版), 2016, 38(10): 62-67.
陶双平, 刘钰琦. 变量核齐次分数次积分在Morrey空间上的估计[J]. 西南大学学报(自然科学版), 2017, 39(12): 52-58.
周盼, 周疆. 多线性分数次积分算子在Morrey型空间上新的端点估计[J]. 西南大学学报(自然科学版), 2017, 39(12): 74-80.
郭庆栋, 周疆. 分数次Hardy算子的交换子在Lipschitz空间上的端点估计[J]. 西南大学学报(自然科学版), 2019, 41(8): 41-47.
赵欢, 周疆. 带变量核的分数次积分交换子在变指数Herz-Morrey空间上的有界性[J]. 西南师范大学学报(自然科学版), 2018, 43(6): 11-16.
张振荣, 赵凯. 非齐度量测度空间上广义分数次积分算子交换子的有界性[J]. 西南大学学报(自然科学版), 2020, 42(8): 88-96.
DUONG X, YAN L X. Duality of Hardy and BMO Spaces Associated with Operators with Heat Kernel Bounds[J]. Journal of the American Mathematical Society, 2005, 18(4): 943-973. doi: 10.1090/S0894-0347-05-00496-0
DUONG X T, YAN L X. New Function Spaces of BMO Type, the John-Niremberg Inequality, Interpolation, and Applications[J]. Communications on Pure and Applied Mathematics, 2005, 58(10): 1375-1420. doi: 10.1002/cpa.20080
JIANG R J, YANG D C. New Orlicz-Hardy Spaces Associated with Divergence Form Elliptic Operators[J]. Journal of Functional Analysis, 2010, 258(4): 1167-1224. doi: 10.1016/j.jfa.2009.10.018
HOFMANN S, LU G Z, MITREA D, et al. Hardy Spaces Associated to Non-Negative Self-Adjoint Operators Satisfying Davies-Gaffney Estimates[J]. Memoirs of the American Mathematical Society, 2011, 214(1007): 78.
CAO J, LIU Y, YANG D C. Hardy Spaces HL1($\mathbb{R}$n) Associated to Schrödinger Type Operators (-Δ)2+V2[J]. Houston Journal of Mathematics, 2010, 36(4): 1067-1095.
LIU Y, DONG J F. Some Estimates of Higher Order Riesz Transform Related to Schrödinger Type Operators[J]. Potential Analysis, 2009, 32(1): 41-55.
LIU Y, ZHANG J, SHENG J L, et al. Some Estimates for Commutators of Riesz Transform Associated with Schrödinger Type Operators[J]. Czechoslovak Mathematical Journal, 2016, 66(1): 169-191.
LIU S Y, ZHANG C. Boundedness of Variation Operators Associated with the Heat Semigroup Generated by the High Order Schrödinger Type Operators[J]. Acta Mathematical Scientia, 2020, 40(5): 1215-1228.
SHEN Z W. Lp Estimates for Schrödinger Operators with Certain Potentials[J]. Annales De I'Institut, 1995, 45(2): 513-546.