AZZOLLINI A, D'AVENIA P, LUISI V. Generalialized Schrödinger-Poisson Type Systems[J]. Communications on Pure and Applied Analysis, 2013, 12(2): 867-879.
BENCI V, FORTUNATO D. An Eigenvalue Problem for the Schrödinger-Maxwell Equation[J]. Topological Methods in Nonlinear Analysis, 1998, 11(2): 283-293. doi: 10.12775/TMNA.1998.019
HUANG L R, ROCHA E M, CHEN J Q. Positive and Sign-Changing Solutions of a Schrödinger-Poisson System Involving a Critical Nonlinearity[J]. Journal of Mathematical Analysis and Applications, 2013, 408: 55-69. doi: 10.1016/j.jmaa.2013.05.071
HUANG L R, ROCHA E M. A Positive Solutions of System with Critical Exponent[J]. Communications Mathematical and Analysis, 2013, 15(1): 29-43.
张鹏, 彭云飞, 张晓飞. 一类带临界指数项的Kirchhoff-Schrödinger-Poisson系统正解的存在性[J]. 西南师范大学学报(自然科学版), 2020, 45(12): 28-35.
王玉婷, 商彦英. 临界和超临界的薛定谔泊松方程正的径向基态解[J]. 西南师范大学学报(自然科学版), 2021, 46(4): 20-24.
李勇勇, 唐春雷. 一类带双临界指数的Schrödinger-Poisson系统正基态解的存在性[J]. 西南大学学报(自然科学版), 2018, 40(6): 84-91.
李苗苗, 唐春雷. 一类带临界指数的Schrödinger-Poisson方程正解的存在性[J]. 西南师范大学学报(自然科学版), 2016, 41(4): 35-38.
LEI C Y, LIU G S, CHU C M, et al. New Multiple Solutions for a Schrödinger-Poisson System Involving Concave-Convex Nonlinearties[J]. Turkish Journal of Mathematics, 2020, 44: 986-997. doi: 10.3906/mat-1807-100
WILLEM M. Minimax Theorems[M]. Boston: Birkhauser, 1996.
BRÉZIS H, NIRENBERG L. Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponents[J]. Communications on Pure and Applied Mathematics, 1983, XXXVI: 437-477.
BRÉZIS H, LIEB E H. A Relation Between Pointwise Convergence of Functions and Con-Vergence of Functionals[J]. Proceedings of the American Mathematical Society, 1983, 88(3): 486-490. doi: 10.1090/S0002-9939-1983-0699419-3