杨云飞, 鲍玉昆, 胡忠义, 等. 基于EMD和SVMs的原油价格预测方法[J]. 管理学报, 2010, 7(12): 1884-1889. doi: 10.3969/j.issn.1672-884X.2010.12.023
|
JACOBS H, WEBER M. On the Determinants of Pairs Trading Profitability[J]. Journal of Financial Markets, 2015, 23: 75-97. doi: 10.1016/j.finmar.2014.12.001
|
张波, 刘晓倩. 基于EGARCH-M模型的沪深300股指期货跨期套利研究——一种修正的协整关系[J]. 统计与信息论坛, 2017, 32(4): 34-40. doi: 10.3969/j.issn.1007-3116.2017.04.006
|
刘海飞, 李伟, 李冬昕, 等. 股指期货跨期套利自适应机制理论与实证——基于沪深300股指期货高频数据的证据[J]. 华东经济管理, 2018, 32(11): 102-111.
|
KRAUSS C, DO X A, HUCK N. Deep Neural Networks, Gradient-Boosted Trees, Random Forests: Statistical Arbitrage on the S&P 500[J]. European Journal of Operational Research, 2017, 259(2): 689-702. doi: 10.1016/j.ejor.2016.10.031
|
HAIN M, HESS J, UHRIG-HOMBURG M. Relative Value Arbitrage in European Commodity Markets[J]. Energy Economics, 2018, 69: 140-154. doi: 10.1016/j.eneco.2017.11.005
|
邢亚丹, 劳兰珺, 孙谦. 跨期套利收益与风险来源探究——基于沪深300股指期货高频跨期套利策略[J]. 投资研究, 2015, 34(10): 98-109.
|
DUNIS C L, LAWS J, EVANS B. Modelling and Trading the Soybean-Oil Crush Spread with Recurrent and Higher Order Networks: a Comparative Analysis[J]. Neural Network World, 2006, 16(3): 193-213.
|
HUCK N. Pairs Selection and Outranking: an Application to the S&P 100 Index[J]. European Journal of Operational Research, 2009, 196(2): 819-825. doi: 10.1016/j.ejor.2008.03.025
|
WILES P S, ENKE D. Nonlinear Modeling Using Neural Networks for Trading the Soybean Complex[J]. Procedia Computer Science, 2014, 36: 234-239. doi: 10.1016/j.procs.2014.09.085
|
王文波, 费浦生, 羿旭明. 基于EMD与神经网络的中国股票市场预测[J]. 系统工程理论与实践, 2010, 30(6): 1027-1033.
|
刘建和, 梁仁方, 王玉斌, 等. 大豆期货合约均值回归套利策略和Elman神经网络套利策略对比研究[J]. 湖南财政经济学院学报, 2016(3): 8-15.
|
邓亚东, 王波. 基于高斯核支持向量机的商品期货市场套利研究[J]. 经济数学, 2018, 35(1): 27-30. doi: 10.3969/j.issn.1007-1660.2018.01.007
|
周亮. 基于价差预测的商品期货跨期套利研究[J]. 金融理论与实践, 2019(7): 84-92. doi: 10.3969/j.issn.1003-4625.2019.07.012
|
HUCK N. Large Data Sets and Machine Learning: Applications to Statistical Arbitrage[J]. European Journal of Operational Research, 2019, 278(1): 330-342. doi: 10.1016/j.ejor.2019.04.013
|
熊志斌. ARIMA融合神经网络的人民币汇率预测模型研究[J]. 数量经济技术经济研究, 2011, 28(6): 64-76.
|
周亮. 机器学习融合ARIMA模型的离岸人民币汇率预测[J]. 统计学报, 2020, 1(2): 48-56.
|
HUANG N E, SHEN Z, LONG S R, et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995. doi: 10.1098/rspa.1998.0193
|
ZHANG X, LAI K K, WANG S Y. A New Approach for Crude Oil Price Analysis Based on Empirical Mode Decomposition[J]. Energy Economics, 2008, 30(3): 905-918. doi: 10.1016/j.eneco.2007.02.012
|
杨云飞, 鲍玉昆, 胡忠义, 等. 基于EMD和SVMs的原油价格预测方法[J]. 管理学报, 2010, 7(12): 1884-1889. doi: 10.3969/j.issn.1672-884X.2010.12.023
|
米子川, 姜天英. 煤炭大数据指数编制及经验模态分解模型研究[J]. 统计与信息论坛, 2016, 31(8): 71-77. doi: 10.3969/j.issn.1007-3116.2016.08.013
|
LI H T, BAI J C, CUI X, et al. A New Secondary Decomposition-Ensemble Approach with Cuckoo Search Optimization for Air Cargo Forecasting[J]. Applied Soft Computing, 2020, 90(1): 1-19.
|
SUN S L, WANG S Y, WEI Y J. A New Multiscale Decomposition Ensemble Approach for Forecasting Exchange Rates[J]. Economic Modelling, 2019, 81: 49-58. doi: 10.1016/j.econmod.2018.12.013
|
吴曼曼, 徐建新. 基于EMD改进的Elman神经网络对股票的短期预测模型[J]. 计算机工程与科学, 2019, 41(6): 1119-1127. doi: 10.3969/j.issn.1007-130X.2019.06.022
|
HUANG N E, WU M L C, LONG S R, et al. A Confidence Limit for the Empirical Mode Decomposition and Hilbert Spectral Analysis[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2003, 459(2037): 2317-2345. doi: 10.1098/rspa.2003.1123
|