KOGOJ A E, LANCONELLI E. On Semilinear Δλ-Laplace Equation[J]. Nonlinear Analysis, 2012, 75(12): 4637-4649. doi: 10.1016/j.na.2011.10.007
|
GRUŠIN V V. On A Class of Elliptic Pseudodifferential Operators that are Degenerate on a Submanifold[J]. Mathematics of the USSR-Sbornik, 1971, 84(2): 163-195.
|
FRANCHI B, LANCONELLI E. Hölder Regularity Theorem for a Class of Linear Nonuniformly Elliptic Operators with Measurable Coefficients[J]. Annali Della Scuola Normale Superiore di Pisa-Classe di Scienze, 1983, 10(4): 523-541.
|
FRANCHI B, LANCONELLI E. An Embedding Theorem for Sobolev Spaces Related to Non-Smooth Vector Fieldsand Harnack Inequality[J]. Communications in Partial Differential Equations, 1984, 9(13): 1237-1264. doi: 10.1080/03605308408820362
|
ANH C T. Global Attractor for a Semilinear Strongly Degenerate Parabolic Equation on ${{\mathbb{R}}^{N}}$[J]. Nonlinear Differential Equations and Applications, 2014, 21(5): 663-678. doi: 10.1007/s00030-013-0261-y
|
LUYEN D T, TRI N M. Existence of Infinitely Many Solutions for Semilinear Degenerate Schrödinger Equations[J]. Journal of Mathematical Analysis and Applications, 2018, 461(2): 1271-1286. doi: 10.1016/j.jmaa.2018.01.016
|
AMBROSETTI A, RABINOWITZ P H. Dual Variational Methods in Critical Point Theory and Applications[J]. Journal of Functional Analysis, 1973, 14(4): 349-381. doi: 10.1016/0022-1236(73)90051-7
|
陈兴菊, 欧增奇. 具有Fučik谱共振的Kirchhoff方程非平凡解的存在性[J]. 西南师范大学学报(自然科学版), 2021, 46(8): 24-31.
|
蒙璐, 储昌木, 雷俊. 一类带有变指数增长的Neumann问题[J]. 西南大学学报(自然科学版), 2021, 43(6): 82-88.
|
余芳, 陈文晶. 带有临界指数增长的分数阶问题解的存在性[J]. 西南大学学报(自然科学版), 2020, 42(10): 116-123.
|
RAHAL B, HAMDANI M K. Infinitely Many Solutions for Δλ-Laplace Equations with Sign-Changing Potential[J]. Journal of Fixed Point Theory and Applications, 2018, 20(4): 1-17.
|
CHEN S J, TANG C L. High Energy Solutions for the Superlinear Schrödinger-Maxwell Equations[J]. Nonlinear Analysis, 2009, 71(10): 4927-4934. doi: 10.1016/j.na.2009.03.050
|
RABINOWITZ P. Minimax Methods in Critical Point Theory with Applications to Differential Equations[M]. Providence, Rhode Island: American Mathematical Society, 1986.
|