唐天国. 一种求解无约束优化问题的新混合共轭梯度法[J]. 西南师范大学学报(自然科学版), 2019, 44(9): 34-39.
HESTENES M R, STIEFEL E. Methods of Conjugate Gradients for Solving Linear Systems[J]. Journal of Research of the National Bureau of Standards, 1952, 49(6): 409-436. doi: 10.6028/jres.049.044
POLAK E, RIBIERE G. Note Sur La Convergence de Méthodes de Directions Conjuguées[J]. Revue Française d'Informatique et De Recherche Opérationnelle Série Rouge, 1969, 3(16): 35-43.
POLYAK B T. The Conjugate Gradient Method in Extremal Problems[J]. USSR Computational Mathematics and Mathematical Physics, 1969, 9(4): 94-112. doi: 10.1016/0041-5553(69)90035-4
DAI Y H, YUAN Y. A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property[J]. SIAM Journal on Optimization, 1999, 10(1): 177-182. doi: 10.1137/S1052623497318992
LIU Y, STOREY C. Efficient Generalized Conjugate Gradient Algorithms, Part 1: Theory[J]. Journal of Optimization Theory and Applications, 1991, 69(1): 129-137. doi: 10.1007/BF00940464
FLETCHER R, REEVES C M. Function Minimization by Conjugate Gradients[J]. The Computer Journal, 1964, 7(2): 149-154. doi: 10.1093/comjnl/7.2.149
FLETCHER R. Practical Method of Optimization, Unconstrained Optimization[M]. New York: John Wiley and Sons, 1987.
SHENGWEI Y, WEI Z X, HUANG H. A Note about WYL's Conjugate Gradient Method and Its Applications[J]. Applied Mathematics and Computation, 2007, 191(2): 381-388. doi: 10.1016/j.amc.2007.02.094
DAI Z F, WEN F H. Another Improved Wei-Yao-Liu Nonlinear Conjugate Gradient Method with Sufficient Descent Property[J]. Applied Mathematics and Computation, 2012, 218(14): 7421-7430. doi: 10.1016/j.amc.2011.12.091
韩信, 张俊容, 王森森. 一种新的混合共轭梯度算法[J]. 西南大学学报(自然科学版), 2017, 39(5): 132-138.
LIU J K, DU X L. Global Convergence of an Efficient Hybrid Conjugate Gradient Method for Unconstrained Optimization [J]. Bulletin of the Korean Mathematical Society, 2013, 50(1): 73-81. doi: 10.4134/BKMS.2013.50.1.073
ANDREI N. Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization[J]. Journal of Optimization Theory and Applications, 2009, 141(2): 249-264. doi: 10.1007/s10957-008-9505-0
BABAIE-KAFAKI S, GHANBARI R. A Hybridization of the Polak-Ribière-Polyak and Fletcher-Reeves Conjugate Gradient Methods[J]. Numerical Algorithms, 2015, 68(3): 481-495. doi: 10.1007/s11075-014-9856-6
ZHANG L, ZHOU W J, LI D H. A Descent Modified Polak-Ribière-Polyak Conjugate Gradient Method and Its Global Convergence[J]. IMA Journal of Numerical Analysis, 2006, 26(4): 629-640. doi: 10.1093/imanum/drl016
NARUSHIMA Y, YABE H, FORD J A. A Three-Term Conjugate Gradient Method with Sufficient Descent Property for Unconstrained Optimization[J]. SIAM Journal on Optimization, 2011, 21(1): 212-230. doi: 10.1137/080743573
ZOUTENDIJK G. Nonlinear Programming, Computational Methods[J]. Integer and Nonlinear Programming, 1970, 143: 37-86.
GILBERT J C, NOCEDAL J. Global Convergence Properties of Conjugate Gradient Methods for Optimization[J]. SIAM Journal on Optimization, 1992, 2(1): 21-42. doi: 10.1137/0802003
ANDREI N. An Unconstrained Optimization Test Functions Collection[J]. Environmental Science and Technology, 2008, 10(1): 6552-6558.
DOLAN E D, MORÉ J J. Benchmarking Optimization Software with Performance Profiles[J]. Mathematical Programming, 2002, 91(2): 201-213. doi: 10.1007/s101070100263