COPPI R, BOLASCO S. Multiway Data Analysis[M]. Amsterdam: Elsevier, 1989.
QI L Q, LUO Z Y. Tensor Analysis[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2017.
LAI W, RUBIN D, KREMPL E. Introduction To Continuum Mechanics [M]. Amsterdam: Elsevier, 2009.
KOLDA T G, BADER B W. Tensor Decompositions and Applications [J]. SIAM Review, 2009, 51(3): 455-500. doi: 10.1137/07070111X
DE SILVA V, LIM L H. Tensor Rank and the Ill-Posedness of the Best Low-Rank Approximation Problem [J]. SIAM Journal on Matrix Analysis and Applications, 2008, 30(3): 1084-1127. doi: 10.1137/06066518X
QI L Q. Eigenvalues of a Real Supersymmetric Tensor [J]. Journal of Symbolic Computation, 2005, 40(6): 1302-1324. doi: 10.1016/j.jsc.2005.05.007
BRAZELL M, LI N, NAVASCA C, et al. Solving Multilinear Systems via Tensor Inversion [J]. SIAM Journal on Matrix Analysis and Applications, 2013, 34(2): 542-570. doi: 10.1137/100804577
LI X T, NG M K. Solving Sparse Non-Negative Tensor Equations: Algorithms and Applications [J]. Frontiers of Mathematics in China, 2015, 10(3): 649-680. doi: 10.1007/s11464-014-0377-3
DING W Y, WEI Y M. Solving Multi-Linear Systems with M-Tensors [J]. Journal of Scientific Computing, 2016, 68(2): 689-715. doi: 10.1007/s10915-015-0156-7
EINSTEIN A. The Foundation of the General Theory of Relativity [M]// KOX A, KLEIN M, SCHULMANN R. The Collected Papers of Albert Einstein. Princeton: Princeton University Press, 2007: 146-200.
NI G. Hermitian Tensor And Quantum Mixed State[EB/OL]. (2019-08-23)[2021-04-01]. https://arxiv.org/pdf/1902.02640.pdf.
SUN L Z, ZHENG B D, BU C J, et al. Moore-Penrose Inverse of Tensors via Einstein Product [J]. Linear and Multilinear Algebra, 2016, 64(4): 686-698. doi: 10.1080/03081087.2015.1083933
PENG Y X, HU X Y, ZHANG L. An Iteration Method for the Symmetric Solutions and the Optimal Approximation Solution of the Matrix Equation AXB=C [J]. Applied Mathematics and Computation, 2005, 160(3): 763-777. doi: 10.1016/j.amc.2003.11.030
HIGHAM N J. Computing a Nearest Symmetric Positive Semidefinite Matrix [J]. Linear Algebra and Its Applications, 1988, 103: 103-118. doi: 10.1016/0024-3795(88)90223-6
YUAN Y X, DAI H. The Nearness Problems for Symmetric Matrix with a Submatrix Constraint [J]. Journal of Computational and Applied Mathematics, 2008, 213(1): 224-231. doi: 10.1016/j.cam.2007.01.033
HUANG G X, NOSCHESE S, REICHEL L. Regularization Matrices Determined by Matrix Nearness Problems [J]. Linear Algebra and Its Applications, 2016, 502: 41-57. doi: 10.1016/j.laa.2015.12.008
ZHANG T, GOLUB G H. Rank-One Approximation to High Order Tensors [J]. SIAM Journal on Matrix Analysis and Applications, 2001, 23(2): 534-550. doi: 10.1137/S0895479899352045
GANDY S, RECHT B, YAMADA I. Tensor Completion and Low-n-Rank Tensor Recovery via Convex Optimization [J]. Inverse Problems, 2011, 27(2): 025010. doi: 10.1088/0266-5611/27/2/025010
LIANG M L, ZHENG B. Further Results on Moore-Penrose Inverses of Tensors with Application to Tensor Nearness Problems [J]. Computers & Mathematics With Applications, 2019, 77(5): 1282-1293.
BADER B, KOLDA T, MAYO J, et al. MATLAB Tensor Toolbox Version 3.2[EB/OL]. (2015-02-18)[2020-12-15]. http://www.tensortoolbox.org.