KERMACK W O, MCKENDRICK A G. A Contribution to the Mathematical Theory of Epidemics[J]. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character, 1927, 115(772): 700-721. doi: 10.1098/rspa.1927.0118
王振国, 刘桂荣. 具有非线性传染率的SIS网络传染病模型的稳定性和分支分析[J]. 西南师范大学学报(自然科学版), 2017, 42(3): 83-89.
LI M Y, WANG L C. Global Stability in some Seir Epidemic Models[C]//Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory. Springer: New York, 2002.
KUNIYA T, NAKATA Y. Permanence and Extinction for a Nonautonomous SEIRS Epidemic Model[J]. Applied Mathematics and Computation, 2012, 218(18): 9321-9331. doi: 10.1016/j.amc.2012.03.011
SIEGEL J D, RHINEHART E, JACKSON M, et al. 2007 Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Health Care Settings[J]. American Journal of Infection Control, 2007, 35(10 suppl 2): S65-S164.
FENG Z L, THIEME H R. Recurrent Outbreaks of Childhood Diseases Revisited: The Impact of Isolation[J]. Mathematical Biosciences, 1995, 128(1-2): 93-130. doi: 10.1016/0025-5564(94)00069-C
HETHCOTE H, MA Z E, LIAO S B. Effects of Quarantine in Six Endemic Models for Infectious Diseases[J]. Mathematical Biosciences, 2002, 180(1-2): 141-160. doi: 10.1016/S0025-5564(02)00111-6
BARABÁSI A L, ALBERT R. Emergence of Scaling in Random Networks[J]. Science, 1999, 286(5439): 509-512. doi: 10.1126/science.286.5439.509
PASTOR-SATORRAS R, VESPIGNANI A. Epidemic Spreading in Scale-Free Networks[J]. Physical Review Letters, 2001, 86(14): 3200-3203. doi: 10.1103/PhysRevLett.86.3200
MA Z E, ZHOU Y C, WU J H. Modeling and Dynamics of Infectious Diseases[M]. Singarpore: World Scientific, 2009.
LIU X, XU D J. Analysis of SEτ IRω S Epidemic Disease Models with Vertical Transmission in Complex Networks[J]. Acta Mathematicae Applicatae Sinica, English Series, 2012, 28(1): 63-74. doi: 10.1007/s10255-012-0094-1
KANG H Y, SUN M F, YU Y J, et al. Spreading Dynamics of an SEIR Model with Delay on Scale-Free Networks[J]. IEEE Transactions on Network Science and Engineering, 2020, 7(1): 489-496. doi: 10.1109/TNSE.2018.2860988
ZHU L H, GUAN G, LI Y M. Nonlinear Dynamical Analysis and Control Strategies of a Network-Based SIS Epidemic Model with Time Delay[J]. Applied Mathematical Modelling, 2019, 70: 512-531. doi: 10.1016/j.apm.2019.01.037
LI C H, TSAI C C, YANG S Y. Analysis of Epidemic Spreading of an SIRS Model in Complex Heterogeneous Networks[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(4): 1042-1054. doi: 10.1016/j.cnsns.2013.08.033
PASTOR-SATORRAS R, VESPIGNANI A. Epidemic Dynamics in Finite Size Scale-Free Networks[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2002, 65(3): 035108. doi: 10.1103/PhysRevE.65.035108
OLINKY R, STONE L. Unexpected Epidemic Thresholds in Heterogeneous Networks: The Role of Disease Transmission[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2004, 70(3): 030902. doi: 10.1103/PhysRevE.70.030902
ZHANG H F, FU X C. Spreading of Epidemics on Scale-Free Networks with Nonlinear Infectivity[J]. Nonlinear Analysis: Theory, Methods & Applications, 2009, 70(9): 3273-3278.
HALE J K, LUNEL S M V. Introduction to Functional Differential Equations[M]. Berlin: Springer, 1993.
VAN DEN DRIESSCHE P. Reproduction Numbers of Infectious Disease Models[J]. Infectious Disease Modelling, 2017, 2(3): 288-303. doi: 10.1016/j.idm.2017.06.002
HALE J K. Retarded Functional Differential Equations: Basic Theory[M]//Theory of Functional Differential Equations. Berlin: Springer, 1977: 36-56.
GUO H B, LI M Y, ZS S. Global Stability of the Endemic Equilibrium of Multigroup SIR Epidemic Models[J]. Canadian Applied Mathematics Quarterly, 2006, 14(3): 259-284.
叶志勇, 刘原, 赵彦勇. 一类SIQR传染病模型在无尺度网络上的传播行为分析[J]. 计算机工程与科学, 2014, 36(8): 1524-1527. doi: 10.3969/j.issn.1007-130X.2014.08.017