WORLD HEALTH ORGANIZATION. Mosquito-Borne Diseases[EB/OL]. (2020-03-02)[2020-04-29]. https://www.who.int/neglecteddiseases/vectorecology/mosquito-borne-diseases/en/.
HOFFMANN A A, MONTGOMERY B L, POPOVICI J, et al. Successful Establishment of Wolbachia in Aedes Populations to Suppress Dengue Transmission[J]. Nature, 2011, 476(7361): 454-457. doi: 10.1038/nature10356
WALKER T, JOHNSON P H, MOREIRA L A, et al. The wMel Wolbachia Strain Blocks Dengue and Invades Caged Aedes Aegypti Populations[J]. Nature, 2011, 476(7361): 450-453. doi: 10.1038/nature10355
BLIMAN P A, ARONNA M S, COELHO F C, et al. Ensuring Successful Introduction of Wolbachia in Natural Populations of Aedes Aegypti by Means of Feedback Control[J]. Journal of Mathematical Biology, 2018, 76(5): 1269-1300. doi: 10.1007/s00285-017-1174-x
LI Y Z, LIU X N. An Impulsive Model for Wolbachia Infection Control of Mosquito-Borne Diseases with General Birth and Death Rate Functions[J]. Nonlinear Analysis: Real World Applications, 2017, 37: 412-432. doi: 10.1016/j.nonrwa.2017.03.003
LI Y Z, LIU X N. A Sex-Structured Model with Birth Pulse and Release Strategy for the Spread of Wolbachia in Mosquito Population[J]. Journal of Theoretical Biology, 2018, 448: 53-65. doi: 10.1016/j.jtbi.2018.04.001
LI Y Z, LIU X N. Modeling and Control of Mosquito-Borne Diseases with Wolbachia and Insecticides[J]. Theoretical Population Biology, 2020, 132: 82-91. doi: 10.1016/j.tpb.2019.12.007
王艳, 刘贤宁. 基孔肯雅病毒在宿主体内的时滞动力学模型[J]. 西南大学学报(自然科学版), 2016, 38(5): 80-85.
李艳, 王稳地, 周爱蓉, 等. 具有隐性感染的登革热模型稳定性分析[J]. 西南师范大学学报(自然科学版), 2018, 43(5): 1-5.
HU L C, HUANG M G, TANG M X, et al. Wolbachia Spread Dynamics in Stochastic Environments[J]. Theoretical Population Biology, 2015, 106: 32-44. doi: 10.1016/j.tpb.2015.09.003
BACA-CARRASCO D, VELASCO-HERNÁNDEZ J X. Sex, Mosquitoes and Epidemics: an Evaluation of Zika Disease Dynamics[J]. Bulletin of Mathematical Biology, 2016, 78(11): 2228-2242. doi: 10.1007/s11538-016-0219-4
FARKAS J Z, HINOW P. Structured and Unstructured Continuous Models for Wolbachia Infections[J]. Bulletin of Mathematical Biology, 2010, 72(8): 2067-2088. doi: 10.1007/s11538-010-9528-1
LOU Y J, ZHAO X Q. A Theoretical Approach to Understanding Population Dynamics with Seasonal Developmental Durations[J]. Journal of Nonlinear Science, 2017, 27(2): 573-603. doi: 10.1007/s00332-016-9344-3