SOUSA-AGUIAR E F, APPEL L G, MOTA C. Natural Gas Chemical Transformations: The Path to Refining in the Future [J]. Catalysis Today, 2005, 101(1): 3-7. doi: 10.1016/j.cattod.2004.12.003
|
HOLMEN A. Direct Conversion of Methane to Fuels and Chemicals [J]. Catalysis Today, 2009, 142(1/2): 2-8.
|
ALVAREZ-GALVAN M C, MOTA N, OJEDA M, et al. Direct Methane Conversion Routes to Chemicals and Fuels [J]. Catalysis Today, 2011, 171(1): 15-23. doi: 10.1016/j.cattod.2011.02.028
|
MUÑOZ-ESCALONA P, PAYARES M C, DORTA M, et al. Analysis and Influence of Acetylene and Propane Gas during Oxyfuel Gas Cutting of 1045 Carbon Steel [J]. Journal of Materials Engineering and Performance, 2006, 15(6): 684-692. doi: 10.1361/105994906X150849
|
WILLIAMS A, SMITH D B. Combustion and Oxidation of Acetylene [J]. Chemical Reviews, 1970, 70(2): 267-293. doi: 10.1021/cr60264a004
|
TROTUȘ I T, ZIMMERMANN T, SCHVTH F. Catalytic Reactions of Acetylene: a Feedstock for the Chemical Industry Revisited [J]. Chemical Reviews, 2014, 114(3): 1761-1782. doi: 10.1021/cr400357r
|
SCHOBERT H. Production of Acetylene and Acetylene-Based Chemicals from Coal [J]. Chemical Reviews, 2014, 114(3): 1743-1760. doi: 10.1021/cr400276u
|
ZHANG H Y, DAI B, WANG X G, et al. Hydrochlorination ofAcetylene to Vinyl Chloride Monomer over Bimetallic Au-La/SAC Catalysts [J]. Journal of Industrial and Engineering Chemistry, 2012, 18(1): 49-54. doi: 10.1016/j.jiec.2011.11.075
|
LIN T J, MENG X, SHI L. Catalytic Hydrocarboxylation of Acetylene to Acrylic Acid Using Ni2O3 and Cupric Bromide as Combined Catalysts [J]. Journal of Molecular Catalysis A: Chemical, 2015, 396: 77-83. doi: 10.1016/j.molcata.2014.09.027
|
KHAN M S, CRYNES B L. Survey of Recent Methane Pyrolysis Literature [J]. Industrial & Engineering Chemistry, 1970, 62(10): 54-59.
|
DEAN A M. Detailed Kinetic Modeling of Autocatalysis in Methane Pyrolysis [J]. The Journal of Physical Chemistry, 1990, 94(4): 1432-1439. doi: 10.1021/j100367a043
|
STEINBERG M. Production of Hydrogen and Methanol from Natural Gas with Reduced CO2 Emission [J]. International Journal of Hydrogen Energy, 1998, 23(6): 419-425. doi: 10.1016/S0360-3199(97)00092-X
|
BARANOV I E, DEMKIN S A, ZHIVOTOV V K, et al. Methane Pyrolysis Stimulated by Admixture of Atomic Hydrogen: 2. Mechanism Analysis and Kinetics Calculation [J]. HighEnergy Chemistry, 2005, 39(4): 268-272.
|
RODAT S, ABANADES S, COULIÉ J, et al. Kinetic Modelling of Methane Decomposition in a Tubular Solar Reactor [J]. Chemical Engineering Journal, 2009, 146(1): 120-127. doi: 10.1016/j.cej.2008.09.008
|
LVMMEN N. ReaxFF-Molecular Dynamics Simulations of Non-Oxidative and Non-Catalyzed Thermal Decomposition of Methane at High Temperatures [J]. Physical Chemistry Chemical Physics, 2010, 12(28): 7883-7893. doi: 10.1039/c003367g
|
PAXMAN D, TROTTIER S, FLYNN M R, et al. Experimental and Numerical Analysis of a Methane Thermal Decomposition Reactor [J]. International Journal of Hydrogen Energy, 2017, 42(40): 25166-25184. doi: 10.1016/j.ijhydene.2017.08.134
|
XUE X G, MENG L Y, MA Y, et al. Molecular Reactive Force-Field Simulations on the Carbon Nanocavities from Methane Pyrolysis [J]. The Journal of Physical Chemistry C, 2017, 121(13): 7502-7513. doi: 10.1021/acs.jpcc.7b00294
|
DINH D K, LEE D H, SONG Y H, et al. Efficient Methane-to-Acetylene Conversion Using Low-Current Arcs [J]. RSC Advances, 2019, 9(56): 32403-32413. doi: 10.1039/C9RA05964D
|
OGIHARA H, TAJIMA H, KUROKAWA H. Pyrolysis of Mixtures of Methane and Ethane: Activation of Methane with the Aid of Radicals Generated from Ethane [J]. Reaction Chemistry & Engineering, 2020, 5(1): 145-153.
|
周游, 王远强, 何清秀. 人酪氨酸酶的同源模建研究[J]. 西南大学学报(自然科学版), 2020, 42(8): 42-48.
|
代武春, 肖绪洋, 程正富. Pd-Pt团簇升温过程中Pd原子偏析的分子动力学模拟研究[J]. 西南师范大学学报(自然科学版), 2016, 41(3): 13-17.
|
钟颖, 王瑨, 陈志谦. 小分子气体在聚叔丁基乙炔中扩散溶解行为的分子动力学模拟[J]. 西南大学学报(自然科学版), 2012, 34(3): 54-61.
|
VANDUIN A C T, DASGUPTA S, LORANT F, et al. ReaxFF: a Reactive Force Field for Hydrocarbons [J]. The Journal of Physical Chemistry A, 2001, 105(41): 9396-9409. doi: 10.1021/jp004368u
|
CHENOWETH K, VANDUIN A C T, GODDARD W A. ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation [J]. The Journal of Physical Chemistry A, 2008, 112(5): 1040-1053. doi: 10.1021/jp709896w
|
SENFTLE T P, HONG S, ISLAM M M, et al. The ReaxFF Reactive Force-Field: Development, Applications and Future Directions [J]. Npj Computational Materials, 2016, 2: 15011-15014. doi: 10.1038/npjcompumats.2015.11
|
WANG Q D, WANG J B, LIJ Q, et al. Reactive Molecular Dynamics Simulation and Chemical Kinetic Modeling of Pyrolysis and Combustion of N-Dodecane [J]. Combustion and Flame, 2011, 158(2): 217-226. doi: 10.1016/j.combustflame.2010.08.010
|
DING J X, ZHANG L, ZHANG Y, et al. A Reactive Molecular Dynamics Study of N-Heptane Pyrolysis at High Temperature [J]. The Journal of Physical Chemistry A, 2013, 117(16): 3266-3278. doi: 10.1021/jp311498u
|
DONG X N, FAN X, FAN Y D, et al. Reactive Molecular Dynamics Simulation of the Pyrolysis and Combustion of Benzene: Ultrahigh Temperature and Oxygen-Induced Enhancement of Initiation Pathways and Their Effect on Carbon Black Generation [J]. RSC Advances, 2015, 5(54): 43695-43704. doi: 10.1039/C5RA02247A
|
CHEN Z J, SUN W Z, ZHAO L. High-Temperature and High-Pressure Pyrolysis of Hexadecane: Molecular Dynamic Simulation Based on Reactive Force Field (ReaxFF) [J]. The Journal of Physical Chemistry A, 2017, 121(10): 2069-2078. doi: 10.1021/acs.jpca.6b12367
|
LIU Y L, DING J X, HAN K L. Molecular Dynamics Simulation of the High-Temperature Pyrolysis of Methylcyclohexane [J]. Fuel, 2018, 217: 185-192. doi: 10.1016/j.fuel.2017.12.055
|
XIN L Y, LIU C, LIU Y, et al. Thermal Decomposition Mechanism of some Hydrocarbons by ReaxFF-Based Molecular Dynamics and Density Functional Theory Study [J]. Fuel, 2020, 275: 117885-1177898. doi: 10.1016/j.fuel.2020.117885
|
PLIMPTON S. Fast Parallel Algorithms for Short-Range Molecular Dynamics [J]. Journal of Computational Physics, 1995, 117(1): 1-19. doi: 10.1006/jcph.1995.1039
|
AKTULGA H M, FOGARTY J C, PANDIT S A, et al. Parallel Reactive Molecular Dynamics: Numerical Methods and Algorithmic Techniques [J]. Parallel Computing, 2012, 38(4-5): 245-259. doi: 10.1016/j.parco.2011.08.005
|
FINCKE J R, ANDERSON R P, HYDE T, et al. Plasma Thermal Conversion of Methane to Acetylene [J]. PlasmaChemistry and Plasma Processing, 2002, 22(1): 105-136.
|
GUO X, FANG G, LI G, et al. Direct, Nonoxidative Conversion of Methane to Ethylene, Aromatics, and Hydrogen [J]. Science, 2014, 344(6184): 616-619. doi: 10.1126/science.1253150
|
CHEN C J, BACK M H, BACK R A. The Thermal Decomposition of Methane. I. Kinetics of the Primary Decompositionto C2H6+H2; Rate Constant for the Homogeneous Unimolecular Dissociation of Methane and Its Pressure Dependence [J]. Canadian Journal of Chemistry, 1975, 53(23): 3580-3590. doi: 10.1139/v75-516
|
OLSVIK O, BILLAUD F. Modelling of the Decomposition of Methane at 1 273 K in a Plug Flow Reactor at Low Conversion [J]. Journal of Analytical and Applied Pyrolysis, 1993, 25: 395-405. doi: 10.1016/0165-2370(93)80058-8
|
TSANG W, HAMPSON R F. Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds [J]. Journal of Physical and Chemical Reference Data, 1986, 15(3): 1087-1279. doi: 10.1063/1.555759
|
ZANTHOFF H, BAERNS M. Oxidative Coupling of Methane in the Gas Phase. Kinetic Simulation and Experimental Verification [J]. Industrial & Engineering Chemistry Research, 1990, 29(1): 2-10.
|
STEACIE E W R. The Kinetics of the Reaction H+C2H6=CH4+CH3 [J]. The Journal of Chemical Physics, 1938, 6(1): 37-40. doi: 10.1063/1.1750121
|
ABANADES S, FLAMANT G. Solar Hydrogen Production from the Thermal Splitting of Methane in a High Temperature Solar Chemical Reactor [J]. Solar Energy, 2006, 80(10): 1321-1332. doi: 10.1016/j.solener.2005.11.004
|
FRENKLACH M, CLARY D W, GARDINER W CJr, et al. Effect of Fuel Structure on Pathways to Soot [J]. Symposium (International) on Combustion, 1988, 21(1): 1067-1076. doi: 10.1016/S0082-0784(88)80337-0
|
COLKET M B III. The Pyrolysis of Acetylene and Vinylacetylene in a Single-Pulse Shock Tube [J]. Symposium (International) on Combustion, 1988, 21(1): 851-864. doi: 10.1016/S0082-0784(88)80317-5
|
BAUERLE S, KLATT M, WAGNER H G G. Recombination and Decomposition of Methylene Radicals at High Temperatures [J]. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 1995, 99(6): 870-879. doi: 10.1002/bbpc.19950990612
|
MARQUES J M C, MARTÍNEZ-NÚÑEZ E, FERNÁNDEZ-RAMOS A, et al. Trajectory Dynamics Study of the Ar+CH4 Dissociation Reaction at High Temperatures: The Importance of Zero-Point-Energy Effects [J]. The Journal of Physical Chemistry A, 2005, 109(24): 5415-5423. doi: 10.1021/jp044707+
|