KUMAR S V, WIGGE P A. H2A Z-Containing Nucleosomes Mediate the Thermosensory Response in Arabidopsis[J]. Cell, 2010, 140(1): 136-147. doi: 10.1016/j.cell.2009.11.006
CHENG Q, ZHOU Y, LIU Z, et al. An Alternatively Spliced Heat Shock Transcription Factor, OsHSFA2dI, Functions in the Heat Stress-Induced Unfolded Protein Response in Rice[J]. Plant Biology (Stuttgart, Germany), 2015, 17(2): 419-429. doi: 10.1111/plb.12267
SINGH A, MITTAL D, LAVANIA D, et al. OsHsfA2c and OsHsfB4b are Involved in the Transcriptional Regulation of Cytoplasmic OsClpB (Hsp100) Gene in Rice (Oryza sativa L. )[J]. Cell Stress and Chaperones, 2012, 17(2): 243-254. doi: 10.1007/s12192-011-0303-5
万发香, 田婷婷, 杜小兵, 等. 热激因子基因AtHSFa1a提高烟草的耐热性研究[J]. 西南大学学报(自然科学版), 2011, 33(10): 75-80.
GIESGUTH M, SAHM A, SIMON S, et al. Redox-Dependent Translocation of the Heat Shock Transcription Factor AtHSFA8 from the Cytosol to the Nucleus in Arabidopsis Thaliana[J]. FEBS Letters, 2015, 589(6): 718-725. doi: 10.1016/j.febslet.2015.01.039
RÖTH S, MIRUS O, BUBLAK D, et al. DNA-Binding and Repressor Function are Prerequisites for the Turnover of the Tomato Heat Stress Transcription Factor HsfB1[J]. The Plant Journal, 2017, 89(1): 31-44. doi: 10.1111/tpj.13317
BHARTI K, VON KOSKULL-DÖRING P, BHARTI S, et al. Tomato Heat Stress Transcription Factor HsfB1 Represents a Novel Type of General Transcription Coactivator with a Histone-Like Motif Interacting with the Plant CREB Binding Protein Ortholog HAC1[J]. The Plant Cell, 2004, 16(6): 1521-1535. doi: 10.1105/tpc.019927
KOTAK S, PORT M, GANGULI A, et al. Characterization of C-Terminal Domains of Arabidopsis Heat Stress Transcription Factors (HSFS) and Identification of a New Signature Combination of Plant Class a HSFS with AHA and NES Motifs Essential for Activator Function and Intracellular Localization[J]. The Plant Journal, 2004, 39(1): 98-112. doi: 10.1111/j.1365-313X.2004.02111.x
MA J, XU Z S, WANG F, et al. Genome-Wide Analysis of HSF Family Transcription Factors and Their Responses to Abiotic Stresses in Two Chinese Cabbage Varieties[J]. Acta Physiologiae Plantarum, 2014, 36(2): 513-523. doi: 10.1007/s11738-013-1432-5
MILLER G, SUZUKI N, RIZHSKY L, et al. Double Mutants Deficient in Cytosolic and Thylakoid Ascorbate Peroxidase Reveal a Complex Mode of Interaction between Reactive Oxygen Species, Plant Development, and Response to Abiotic Stresses[J]. Plant Physiology, 2007, 144(4): 1777-1785. doi: 10.1104/pp.107.101436
MITTAL D, CHAKRABARTI S, SARKAR A, et al. Heat Shock Factor Gene Family in Rice: Genomic Organization and Transcript Expression Profiling in Response to High Temperature, Low Temperature and Oxidative Stresses[J]. Plant Physiology and Biochemistry, 2009, 47(9): 785-795.
MITTAL D, MADHYASTHA D A, GROVER A. Genome-Wide Transcriptional Profiles during Temperature and Oxidative Stress Reveal Coordinated Expression Patterns and Overlapping Regulons in Rice[J]. PLoS One, 2012, 7(7): e40899. doi: 10.1371/journal.pone.0040899
PARK S, LEE C M, DOHERTY C J, et al. Regulation of the Arabidopsis CBF Regulon by a Complex Low-Temperature Regulatory Network[J]. The Plant Journal, 2015, 82(2): 193-207. doi: 10.1111/tpj.12796
LIU Z W, WU Z J, LI X H, et al. Identification, Classification, and Expression Profiles of Heat Shock Transcription Factors in Tea Plant (Camellia sinensis) under Temperature Stress[J]. Gene, 2016, 576(1): 52-59. doi: 10.1016/j.gene.2015.09.076
田小琴. 番茄花序间隔节位的QTL定位及ShHsfC1的功能分析[D]. 武汉: 华中农业大学, 2018.
BARRERO-GIL J, HUERTAS R, RAMBLA J L, et al. Tomato Plants Increase Their Tolerance to Low Temperature in a Chilling Acclimation Process Entailing Comprehensive Transcriptional and Metabolic Adjustments[J]. Plant, Cell & Environment, 2016, 39(10): 2303-2318.
潘阳露. 番茄转录因子SlbZIP38响应干旱和高盐胁迫的功能研究[D]. 重庆: 西南大学, 2018.
ACHARD P, GONG F, CHEMINANT S, et al. The Cold-Inducible CBF1 Factor-Dependent Signaling Pathway Modulates the Accumulation of the Growth-Repressing DELLA Proteins via Its Effect on Gibberellin Metabolism[J]. The Plant Cell, 2008, 20(8): 2117-2129. doi: 10.1105/tpc.108.058941
ZHANG D, SUN W, SINGH R, et al. GRF-Interacting Factor1 Regulates Shoot Architecture and Meristem Determinacy in Maize[J]. The Plant Cell, 2018, 30(2): 360-374. doi: 10.1105/tpc.17.00791
LANTZOUNI O, ALKOFER A, FALTER-BRAUN P, et al. GROWTH-REGULATING FACTORS Interact with DELLAs and Regulate Growth in Cold Stress[J]. The Plant Cell, 2020, 32(4): 1018-1034. doi: 10.1105/tpc.19.00784