SULIMAN F E O, AL-LAWATI Z H, AL-KINDY S M Z. A Spectrofluorimetric Sequential Injection Method for the Determination of Penicillamine Using Fluorescamine in the Presence of Beta-Cyclodextrins[J]. Journal of Fluorescence, 2008, 18(6): 1131-1138. doi: 10.1007/s10895-008-0363-9
陈新谦, 金有豫, 汤光, 等. 新编药物学[M]. 13版. 北京: 人民卫生出版社, 1992.
LIN X, ZHU S, WANG Q H, et al. Chiral Recognition of Penicillamine Enantiomers Using Hemoglobin and Gold Nanoparticles Functionalized Graphite-Like Carbon Nitride Nanosheets via Electrochemiluminescence[J]. Colloids and Surfaces B: Biointerfaces, 2016, 148: 371-376. doi: 10.1016/j.colsurfb.2016.09.013
ZHAI Y B, ZHUANG H Y, PEI M S, et al. The Development of a Conjugated Polyelectrolytes Derivative Based Fluorescence Switch and Its Application in Penicillamine Detection[J]. Journal of Molecular Liquids, 2015, 202: 153-157. doi: 10.1016/j.molliq.2014.12.023
LI B L, LUO J H, LUO H Q, et al. A Novel Strategy for Selective Determination of D-Penicillamine Based on Molecularly Imprinted Polypyrrole Electrode via the Electrochemical Oxidation with Ferrocyanide[J]. Sensors and Actuators B: Chemical, 2013, 186: 96-102. doi: 10.1016/j.snb.2013.05.091
SARACINO M A, CANNISTRACI C, BUGAMELLI F, et al. A Novel HPLC-Electrochemical Detection Approach for the Determination of D-Penicillamine in Skin Specimens[J]. Talanta, 2013, 103: 355-360. doi: 10.1016/j.talanta.2012.10.076
NGAMDEE K, PUANGMALI T, TUNTULANI T, et al. Circular Dichroism Sensor Based on Cadmium Sulfide Quantum Dots for Chiral Identification and Detection of Penicillamine[J]. Analytica Chimica Acta, 2015, 898: 93-100. doi: 10.1016/j.aca.2015.09.038
李茜, 宋汉敏, 刘英. 离子色谱法测定青霉胺片的含量及有关物质[J]. 药物分析杂志, 2020, 40(4): 698-706.
李玲芳, 王琦. 荧光碳点的制备及银离子辅助的点亮型识别青霉胺[J]. 无机化学学报, 2020, 36(11): 2055-2062.
周晓燕, 李在均, 王光丽, 等. 手性CdTe量子点制备及在药物青霉胺对映体检测中的应用[J]. 分析试验室, 2013, 32(9): 1-5.
YUAN Y S, ZHAO X, LIU S P, et al. A Fluorescence Switch Sensor Used for D-Penicillamine Sensing and Logic Gate Based on the Fluorescence Recovery of Carbon Dots[J]. Sensors and Actuators B: Chemical, 2016, 236: 565-573. doi: 10.1016/j.snb.2016.06.007
NEUPANE L N, PARK J Y, PARK J H, et al. Turn-on Fluorescent Chemosensor Based on an Amino Acid for Pb(Ⅱ) and Hg(Ⅱ) Ions in Aqueous Solutions and Role of Tryptophan for Sensing[J]. Organic Letters, 2013, 15(2): 254-257. doi: 10.1021/ol3029516
WAN X J, LI S F, ZHUANG L L, et al. L-Tryptophan-Capped Carbon Quantum Dots for the Sensitive and Selective Fluorescence Detection of Mercury Ion in Aqueous Solution[J]. Journal of Nanoparticle Research, 2016, 18(7): 1-9.
NEELAM, SINGH V, SHANKAR B, et al. Molecular Logic Operations Based on Optical Detection of Sulfur Mustard Simulant Using Pyridine Appended Mg-Porphyrazine Complex[J]. Sensors and Actuators B: Chemical, 2016, 227: 85-91. doi: 10.1016/j.snb.2015.12.035
SINGH G, SINGH J, SINGH J, et al. Design of Selective 8-Methylquinolinol Based Ratiometric Fe2+ and Fe3+/H2PO4- Fluorescent Chemosensor Mimicking NOR and IMPLICATION Logic Gates[J]. Journal of Luminescence, 2015, 165: 123-129. doi: 10.1016/j.jlumin.2015.04.027