KATO T. Blow-up of Solutions of some Nonlinear Hyperbolic Equations[J]. Communications on Pure and Applied Mathematics, 1980, 33(4): 501-505. doi: 10.1002/cpa.3160330403
JOHN F. Blow-up of Solutions of Nonlinear Wave Equations in Three Space Dimensions[J]. Manuscripta Mathematica, 1979, 28(1-3): 235-268. doi: 10.1007/BF01647974
STRAUSS W A. Nonlinear Scattering Theory at Low Energy[J]. Journal of Functional Analysis, 1981, 41(1): 110-133. doi: 10.1016/0022-1236(81)90063-X
GLASSEY R T. Finite-Time Blow-up for Solutions of Nonlinear Wave Equations[J]. Mathematische Zeitschrift, 1981, 177(3): 323-340. doi: 10.1007/BF01162066
SIDERIS T C. Nonexistence of Global Solutions to Semilinear Wave Equations in High Dimensions[J]. Journal of Differential Equations, 1984, 52(3): 378-406. doi: 10.1016/0022-0396(84)90169-4
SCHAEFFER J. The Equation uttu=|u|p for the Critical Value of p[J]. Proceedings of the Royal Society of Edinburgh: Section A, 1985, 101(1/2): 31-44.
TAKAMURA H, WAKASA K. The Sharp Upper Bound of the Lifespan of Solutions to Critical Semilinear Wave Equations in High Dimensions[J]. Journal of Differential Equations, 2011, 251(4/5): 1157-1171.
TAKAMURA H. Improved Kato's Lemma on Ordinary Differential Inequality and Its Application to Semilinear Wave Equations[J]. Nonlinear Analysis, 2015, 125: 227-240. doi: 10.1016/j.na.2015.05.024
ZHOU Y, HAN W. Life-Span of Solutions to Critical Semilinear Wave Equations[J]. Communications in Partial Differential Equations, 2014, 39(3): 439-451. doi: 10.1080/03605302.2013.863914
CHEN W H. Interplay Effects on Blow-up of Weakly Coupled Systems for Semilinear Wave Equations with General Nonlinear Memory Terms[J]. Nonlinear Analysis, 2021, 202: 112160. doi: 10.1016/j.na.2020.112160
CHEN W H, PALMIERI A. Nonexistence of Global Solutions for the Semilinear Moore-Gibson-Thompson Equation in the Conservative Case[J]. Discrete & Continuous Dynamical Systems-A, 2020, 40(9): 5513-5540.
CHEN W H, REISSIG M. Blow-up of Solutions to Nakao's Problem via an Iteration Argument[J]. Journal of Differential Equations, 2021, 275: 733-756. doi: 10.1016/j.jde.2020.11.009
CHEN W H, IKEHATA R. The Cauchy Problem for the Moore-Gibson-Thompson Equation in the Dissipative Case[J]. Journal of Differential Equations, 2021, 292: 176-219. doi: 10.1016/j.jde.2021.05.011
CHEN W H, PALMIERI A. Weakly Coupled System of Semilinear Wave Equations with Distinct Scale-Invariant Terms in the Linear Part[J]. Zeitschrift Für Angewandte Mathematik Und Physik, 2019, 70(2): 1-21.
LAI N A, TAKAMURA H. Nonexistence of Global Solutions of Nonlinear Wave Equations with Weak Time-Dependent Damping Related to Glassey's Conjecture[J]. Differential Integral Equations, 2019, 32(1/2): 37-48.
PALMIERI A, TAKAMURA H. Blow-up for a Weakly Coupled System of Semilinear Damped Wave Equations in the Scattering Case with Power Nonlinearities[J]. Nonlinear Analysis, 2019, 187: 467-492. doi: 10.1016/j.na.2019.06.016
LIU Y. Blow-up Phenomena for the Nonlinear Nonlocal Porous Medium Equation under Robin Boundary Condition[J]. Computers & Mathematics With Applications, 2013, 66(10): 2092-2095.
TAO X Y, FANG Z B. Blow-up Phenomena for a Nonlinear Reaction-Diffusion System with Time Dependent Coefficients[J]. Computers & Mathematics With Applications, 2017, 74(10): 2520-2528.
MA L W, FANG Z B. Blow-up Phenomena of Solutions for a Reaction-Diffusion Equation with Weighted Exponential Nonlinearity[J]. Computers & Mathematics With Applications, 2018, 75(8): 2735-2745.
YORDANOV B T, ZHANG Q S. Finite Time Blow up for Critical Wave Equations in High Dimensions[J]. Journal of Functional Analysis, 2006, 231(2): 361-374. doi: 10.1016/j.jfa.2005.03.012