SHANG J, TIAN J, CHENG H, et al. The Chromosome-Level Wintersweet (Chimonanthus praecox) Genome Provides Insights into Floral Scent Biosynthesis and Flowering in Winter[J]. Genome Biology, 2020, 21(1): 200-228. doi: 10.1186/s13059-020-02088-y
|
王雷, 李玲莉, 王海洋, 等. 重庆市46种木本园林植物不同生长型对开花物候的效应[J]. 西南大学学报(自然科学版), 2020, 42(11): 86-94.
|
SUI S, LUO J, MA J, et al. Generation and Analysis of Expressed Sequence Tags from Chimonanthus praecox (Wintersweet) Flowers for Discovering Stress-Responsive and Floral Development-Related Genes[J]. Comparative and Functional Genomics, 2012(5): 134596-134609.
|
LIU D F, SUI S F, MA J, et al. Transcriptomic Analysis of Flower Development in Wintersweet (Chimonanthus praecox)[J]. PLoS One, 2014, 9(1): e86976. doi: 10.1371/journal.pone.0086976
|
LI Z N, LIU N, ZHANG W, et al. Integrated Transcriptome and Proteome Analysis Provides Insight into Chilling-Induced Dormancy Breaking in Chimonanthus praecox[J]. Horticulture Research, 2020, 7(1): 198-207. doi: 10.1038/s41438-020-00421-x
|
WURTZEL E T. Changing Form and Function through Carotenoids and Synthetic Biology[J]. Plant Physiology, 2019, 179(3): 830-843. doi: 10.1104/pp.18.01122
|
SUN T, LI L. Toward the 'Golden' Era: The Status in Uncovering the Regulatory Control of Carotenoid Accumulation in Plants[J]. Plant Science, 2020, 290(1): 110331-110342.
|
ZHENG X, GIULIANO G, AL-BABILI S. Carotenoid Biofortification in Crop Plants: Citius, Altius, Fortius[J]. Biochimica Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2020, 1865(11): 158664-158681.
|
YABUZAKI J. Carotenoids Database: Structures, Chemical Fingerprints and Distribution among Organisms[J]. Database, 2017(4): 1-11.
|
SUN T, YUAN H, CAO H, et al. Carotenoid Metabolism in Plants: The Role of Plastids[J]. Molecular Plant, 2018, 11(1): 58-74. doi: 10.1016/j.molp.2017.09.010
|
YUAN H, ZHANG J, NAGESWARAN D, et al. Carotenoid Metabolism and Regulation in Horticultural Crops[J]. Horticulture Research, 2015, 2(9): 15036-15047.
|
GAO L, GONDA I, SUN H, et al. The Tomato Pan-Genome Uncovers New Genes and a Rare Allele Regulating Fruit Flavor[J]. Nature Genetics, 2019, 51(6): 1044-1051. doi: 10.1038/s41588-019-0410-2
|
UMEHARA M, HANADA A, YOSHIDA S, et al. Inhibition of Shoot Branching by New Terpenoid Plant Hormones[J]. Nature, 2008, 455(7210): 195-200. doi: 10.1038/nature07272
|
LIU L, SHAO Z, ZHANG M, et al. Regulation of Carotenoid Metabolism in Tomato[J]. Molecular Plant, 2015, 8(1): 28-39. doi: 10.1016/j.molp.2014.11.006
|
EISENREICH W, ROHDICH F, BACHER A. Deoxyxylulose Phosphate Pathway to Terpenoids[J]. Trends in Plant Science, 2001, 6(2): 78-84. doi: 10.1016/S1360-1385(00)01812-4
|
RODRIGUEZ-CONCEPCION M, BORONAT A. Breaking New Ground in the Regulation of the Early Steps of Plant Isoprenoid Biosynthesis[J]. Current Opinion in Plant Biology, 2015, 25(6): 17-22.
|
MCQUINN R P, WONG B, GIOVANNONI J J. AtPDS Overexpression in Tomato: Exposing Unique Patterns of Carotenoid Self-Regulation and an Alternative Strategy for the Enhancement of Fruit Carotenoid Content[J]. Plant Biotechnology Journal, 2018, 16(2): 482-494. doi: 10.1111/pbi.12789
|
KIM J E, CHENG K M, CRAFT N E, et al. Over-Expression of Arabidopsis thaliana Carotenoid Hydroxylases Individually and in Combination with a Beta-Carotene Ketolase Provides Insight into in Vivo Functions[J]. Phytochemistry, 2010, 71(2/3): 168-178.
|
SUN T, TADMOR Y, LI L: Pathways for Carotenoid Biosynthesis, Degradation, and Storage[J]. Methods in Molecular Biology, 2020, 2083(11): 3-23.
|
JIA K P, BAZ L, AL-BABILI S. From Carotenoids to Strigolactones[J]. Journal of Experimental Botany, 2018, 69(9): 2189-2204. doi: 10.1093/jxb/erx476
|
VOGEL J, TIEMAN D, SIMS C, et al. Carotenoid Content Impacts Flavor Acceptability in Tomato (Solanum lycopersicum)[J]. Journal of the Science of Food and Agriculture, 2010, 90(13): 2233-2240. doi: 10.1002/jsfa.4076
|
KANG L, PARK S C, JI C Y, et al. Metabolic Engineering of Carotenoids in Transgenic Sweetpotato[J]. Breed Science, 2017, 67(1): 27-34. doi: 10.1270/jsbbs.16118
|
郝再彬, 苍晶, 徐仲, 等. 植物生理实验[M]. 哈尔滨: 哈尔滨工业大学出版社, 2004: 46-49.
|
CHEN C J, CHEN H, ZHANG Y, et al. Tbtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data[J]. Molecular Plant, 2020, 13(8): 1194-1202. doi: 10.1016/j.molp.2020.06.009
|
LI S, STRID A. Anthocyanin Accumulation and Changes in Chs and Pr-5 Gene Expression in Arabidopsis thaliana after Removal of the Inflorescence Stem (Decapitation)[J]. Plant physiology and Biochemistry, 2005, 43(6): 521-525. doi: 10.1016/j.plaphy.2005.05.004
|
DEMURTAS O C, DE BRITO FRANCISCO R, DIRETTO G, et al. ABCC Transporters Mediate the Vacuolar Accumulation of Crocins in Saffron stigmas[J]. Plant Cell, 2019, 31(11): 2789-2804.
|
ZHENG X J, ZHU K J, SUN Q, et al. Natural Variation in CCD4 Promoter Underpins Species-Specific Evolution of Red Coloration in Citrus Peel[J]. Molecular Plant, 2019, 12(9): 1294-1307. doi: 10.1016/j.molp.2019.04.014
|
岳宁波, 李云洲, 李玉龙, 等. 番茄SlMAPK6基因克隆及其表达特性分析[J]. 南方农业学报, 2020, 51(7): 1625-1633. doi: 10.3969/j.issn.2095-1191.2020.07.015
|
阙怡, 张基林, 王梦榕, 等. 番茄的酵母双杂交cDNA文库构建与评价[J]. 西南师范大学学报(自然科学版), 2021, 46(9): 75-80.
|
CAO H B, LUO H M, YUAN H, et al. A Neighboring Aromatic-Aromatic Amino Acid Combination Governs Activity Divergence between Tomato Phytoene Synthases[J]. Plant Physiology, 2019, 180(4): 1988-2003. doi: 10.1104/pp.19.00384
|
JANG S J, JEONG H B, JUNG A, et al. Phytoene Synthase 2 Can Compensate for the Absence of PSY1 in the Control of Color in Capsicum Fruit[J]. Journal of Experimental Botany, 2020, 71(12): 3417-3427. doi: 10.1093/jxb/eraa155
|
ZHU C F, NAQVI S, BREITENBACH J, et al. Combinatorial Genetic Transformation Generates a Library of Metabolic Phenotypes for the Carotenoid Pathway in Maize[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(47): 18232-18237. doi: 10.1073/pnas.0809737105
|
ZENG J, WANG C, CHEN X, et al. The Lycopene B-Cyclase Plays a Significant Role in Provitamin a Biosynthesis in Wheat Endosperm[J]. BMC Plant Biology, 2015, 15(5): 112-126.
|
HERMANNS A S, ZHOU X, XU Q, et al. Carotenoid Pigment Accumulation in Horticultural Plants[J]. Horticultural Plant Journal, 2020, 6(6): 343-360. doi: 10.1016/j.hpj.2020.10.002
|
SUN L, YUAN B, ZHANG M, et al. Fruit-Specific Rnai-Mediated Suppression of SlNCED1 Increases Both Lycopene and B-Carotene Contents in Tomato Fruit[J]. Journal of Experimental Botany, 2012, 63(8): 3097-3108. doi: 10.1093/jxb/ers026
|
WANG Y, ZHI Y L, JIN Q M, et al. Discovery of 4-((7h-Pyrrolo[2, 3-D] Pyrimidin-4-Yl)Amino)-N-(4-((4-Methylpiperazin-1-Yl)Methyl)P Henyl)-1h-Pyrazole-3-Carboxamide (Fn-1501), an Flt3- and Cdk-Kinase Inhibitor with Potentially High Efficiency against Acute Myelocytic Leukemia[J]. Journal of Medicinal Chemistry, 2018, 61(4): 1499-1518. doi: 10.1021/acs.jmedchem.7b01261
|
LASHBROOKE J G, YOUNG P R, DOCKRALL S J, et al. Functional Characterisation of Three Members of the Vitis Vinifera L. Carotenoid Cleavage Dioxygenase Gene Family[J]. BMC Plant Biology, 2013, 13(10): 156-173.
|
TUAN P A, PARK S U. Molecular Cloning and Characterization of Cdnas Encoding Carotenoid Cleavage Dioxygenase in Bitter Melon (Momordica charantia)[J]. Journal of Plant Physiology, 2013, 170(1): 115-120. doi: 10.1016/j.jplph.2012.09.001
|
OHMIYA A, KISHIMOTO S, AIDA R, et al. Carotenoid Cleavage Dioxygenase (CmCCD4a) Contributes to White Color Formation in Chrysanthemum Petals[J]. Plant Physiology, 2006, 142(3): 1193-1201. doi: 10.1104/pp.106.087130
|
JING G X, LI T T, QU H, et al. Carotenoids and Volatile Profiles of Yellow-and Red-Fleshed Papaya Fruit in Relation to the Expression of Carotenoid Cleavage Dioxygenase Genes[J]. Postharvest Biology and Technology, 2015, 109(11): 114-119.
|
NACKE C, HüTTMANN S, ETSCHMANN M M, et al. Enzymatic Production and In Situ Separation of Natural B-Ionone from B-Carotene[J]. Journal of Industrial Microbiology & Biotechnology, 2012, 39(12): 1771-1778.
|
URESHINO K, NAKAYAMA M, MIYAJIMA I. Contribution Made by the Carotenoid Cleavage Dioxygenase 4 Gene to Yellow Colour Fade in Azalea Petals[J]. Euphytica, 2016, 207(2): 401-417. doi: 10.1007/s10681-015-1557-2
|
BAI S L, TUAN P A, TATSUKI M, et al. Knockdown of Carotenoid Cleavage Dioxygenase 4 (CCD4) Via Virus-Induced Gene Silencing Confers Yellow Coloration in Peach Fruit: Evaluation of Gene Function Related to Fruit Traits[J]. Plant Molecular Biology Reporter, 2016, 34(1): 257-264. doi: 10.1007/s11105-015-0920-8
|
WATANABE K, ODA-YAMAMIZO C, SAGE-ONO K, et al. Alteration of Flower Colour in Ipomoea Nil through CRISPR/Cas9-Mediated Mutagenesis of Carotenoid Cleavage Dioxygenase 4[J]. Transgenic Research, 2018, 27(1): 25-38. doi: 10.1007/s11248-017-0051-0
|
SIMKIN A J, UNDERWOOD B A, AULDRIDGE M, et al. Circadian Regulation of the PhCCD1 Carotenoid Cleavage Dioxygenase Controls Emission of Beta-Ionone, a Fragrance Volatile of Petunia Flowers[J]. Plant Physiol, 2004, 136(3): 3504-3514. doi: 10.1104/pp.104.049718
|
HUANG F C, MOLNÁR P, SCHWAB W. Cloning and Functional Characterization of Carotenoid Cleavage Dioxygenase 4 Genes[J]. Journal of Experimental Botany, 2009, 60(11): 3011-3022. doi: 10.1093/jxb/erp137
|
SONG M-H, LIM S-H, KIM J K, et al. In Planta Cleavage of Carotenoids by Arabidopsis Carotenoid Cleavage Dioxygenase 4 in Transgenic Rice Plants[J]. Plant Biotechnology Reports, 2016, 10(5): 291-300. doi: 10.1007/s11816-016-0405-8
|
VALLABHANENI R, BRADBURY L M, WURTZEL E T. The Carotenoid Dioxygenase Gene Family in Maize, Sorghum, and Rice[J]. Archives of Biochemistry and Biophysics, 2010, 504(1): 104-111. doi: 10.1016/j.abb.2010.07.019
|
VOGEL J T, TAN B C, MCCARTY D R, et al. The Carotenoid Cleavage Dioxygenase 1 Enzyme Has Broad Substrate Specificity, Cleaving Multiple Carotenoids at Two Different Bond Positions[J]. Journal of Biological Chemistry, 2008, 283(17): 11364-11373. doi: 10.1074/jbc.M710106200
|
ILG A, BRUNO M, BEYER P, et al. Tomato Carotenoid Cleavage Dioxygenases 1a and 1b: Relaxed Double Bond Specificity Leads to a Plenitude of Dialdehydes, Mono-Apocarotenoids and Isoprenoid Volatiles[J]. FEBS Open Bio, 2014, 4(6): 584-593.
|