QI L Q. Eigenvalues of a Real Supersymmetric Tensor[J]. Journal of Symbolic Computation, 2005, 40(6): 1302-1324. doi: 10.1016/j.jsc.2005.05.007
|
BENSON A R. Three Hypergraph Eigenvector Centralities[J]. SIAM Journal on Mathematics of Data Science, 2019, 1(2): 293-312. doi: 10.1137/18M1203031
|
BENSON A R, GLEICH D F, LESKOVEC J. Tensor Spectral Clustering for Partitioning Higher-Order Network Structures[C]//Proceedings of the SIAM International Conference on Data Mining SIAM International Conference on Data Mining. Philadelphia: Society for Industrial and Applied Mathematics, 2015: 118-126.
|
SHI X C, LING H B, PANG Y, et al. Rank-1 Tensor Approximation for High-Order Association in Multi-Target Tracking[J]. International Journal of Computer Vision, 2019, 127(8): 1063-1083. doi: 10.1007/s11263-018-01147-z
|
DUTTA A, LLADÓS J, BUNKE H, et al. Product Graph-Based Higher Order Contextual Similarities for Inexact Subgraph Matching[J]. Pattern Recognition, 2018, 76: 596-611. doi: 10.1016/j.patcog.2017.12.003
|
何军, 刘衍民. 张量伪谱的新包含域[J]. 西南师范大学学报(自然科学版), 2019, 44(8): 7-10.
|
QI L Q. Eigenvalues and Invariants of Tensors[J]. Journal of Mathematical Analysis and Applications, 2007, 325(2): 1363-1377. doi: 10.1016/j.jmaa.2006.02.071
|
许云霞, 李耀堂. 四阶张量Z-特征值的一个新的定位集及其应用[J]. 西北师范大学学报(自然科学版), 2020, 56(6): 28-32.
|
NG M, QI L Q, ZHOU G L. Finding the Largest Eigenvalue of a Nonnegative Tensor[J]. SIAM Journal on Matrix Analysis and Applications, 2010, 31(3): 1090-1099. doi: 10.1137/09074838X
|
桑彩丽, 赵建兴. 矩形张量的S-型奇异值包含集[J]. 西南师范大学学报(自然科学版), 2019, 44(10): 1-4.
|
LI W. On the Z-Eigenvalue Bounds for a Tensor[J]. Numerical Mathematics: Theory, Methods and Applications, 2019, 11(4): 810-826.
|
KOFIDIS E, REGALIA P A. On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors[J]. SIAM Journal on Matrix Analysis and Applications, 2002, 23(3): 863-884. doi: 10.1137/S0895479801387413
|
ZENG M L, NI Q. quasi-Newton Method for Computing z-Eigenpairs of a Symmetric Tensor[J]. Pacific Journal of Optimization, 2015, 11(2): 279-290.
|
DUCHENNE O, BACH F, KWEON I S, et al. A Tensor-Based Algorithm for High-Order Graph Matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2383-2395. doi: 10.1109/TPAMI.2011.110
|
张小双, 陈震, 刘奇龙. 求解不同阶对称张量组特征值的带位移高阶幂法[J]. 西南大学学报(自然科学版), 2020, 42(8): 81-87.
|
LI D H, XIE S L, XU H R. Splitting Methods for Tensor Equations[J]. Numerical Linear Algebra With Applications, 2017, 24(5): e2102. doi: 10.1002/nla.2102
|
周会晓, 倪勤, 曾梅兰. 求实对称张量Z-特征值的牛顿法[J]. 淮北师范大学学报(自然科学版), 2014, 35(3): 10-12. doi: 10.3969/j.issn.2095-0691.2014.03.003
|
KOLDA T G, MAYO J R. Shifted Power Method for Computing Tensor Eigenpairs[J]. SIAM Journal on Matrix Analysis and Applications, 2011, 32(4): 1095-1124. doi: 10.1137/100801482
|
NOCEDAL J, WRIGHT S J. Numerical Optimization[M]. New York: Springer-Verlag, 1999.
|