BOLTON M D, THOMMA B P H J, NELSON B D. Sclerotinia sclerotiorum (Lib. ) de Bary: Biology and Molecular Traits of a Cosmopolitan Pathogen [J]. Molecular Plant Pathology, 2006, 7(1): 1-16. doi: 10.1111/j.1364-3703.2005.00316.x
LU C F, NAPIER J A, CLEMENTE T E, et al. New Frontiers in Oilseed Biotechnology: Meeting the Global Demand for Vegetable Oils for Food, Feed, Biofuel, and Industrial Applications [J]. Current Opinion in Biotechnology, 2011, 22(2): 252-259. doi: 10.1016/j.copbio.2010.11.006
许代香, 贾乐东, 王瑞, 等. 甘蓝型油菜显性核不育系D3A的细胞学研究[J]. 西南大学学报(自然科学版), 2020, 42(1): 16-21. doi: 10.13718/j.cnki.xdzk.2020.01.003
DUAN Y B, GE C Y, LIU S M, et al. Effect of Phenylpyrrole Fungicide Fludioxonil on Morphological and Physiological Characteristics of Sclerotinia sclerotiorum [J]. Pesticide Biochemistry and Physiology, 2013, 106(1/2): 61-67.
FENNER K, CANONICA S, WACKETT L P, et al. Evaluating Pesticide Degradation in the Environment: Blind Spots and Emerging Opportunities [J]. Science, 2013, 341(6147): 752-758. doi: 10.1126/science.1236281
MCGRATH M T. Fungicide Resistance in Cucurbit Powdery Mildew: Experiences and Challenges [J]. Plant Disease, 2001, 85(3): 236-245. doi: 10.1094/PDIS.2001.85.3.236
FERNANDO W G D, NAKKEERAN S, ZHANG Y, et al. Biological Control of Sclerotinia sclerotiorum (Lib. ) de Bary by Pseudomonas and Bacillus Species on Canola Petals [J]. Crop Protection, 2007, 26(2): 100-107. doi: 10.1016/j.cropro.2006.04.007
LI C X, LIU S Y, SIVASITHAMPARAM K, et al. New Sources of Resistance to Sclerotinia Stem Rot Caused by Sclerotinia sclerotiorum in Chinese and Australian Brassica napus and B. juncea germplasm Screened under Western Australian Conditions [J]. Australasian Plant Pathology, 2008, 38(2): 149-152.
ZENG W T, KIRK W, HAO J J. Field Management of Sclerotinia Stem Rot of Soybean Using Biological Control Agents [J]. Biological Control, 2012, 60(2): 141-147. doi: 10.1016/j.biocontrol.2011.09.012
LI G Q, HUANG H C, MIAO H J, et al. Biological Control of Sclerotinia Diseases of Rapeseed by Aerial Applications of the Mycoparasite Coniothyrium minitans [J]. European Journal of Plant Pathology, 2006, 114(4): 345-355. doi: 10.1007/s10658-005-2232-6
REN L, LI G Q, HAN Y C, et al. Degradation of Oxalic Acid by Coniothyrium minitans and Its Effects on Production and Activity of β-1, 3-Glucanase of This Mycoparasite [J]. Biological Control, 2007, 43(1): 1-11. doi: 10.1016/j.biocontrol.2007.06.006
KOST G, OELMULLER R, VARMA A. Piriformospora indica: Sebacinales and Their Biotechnological Applications [M]. Verlag, Germany: Springer, 2013.
ABDELAZIZ M E, ABDELSATTAR M, ABDELDAYM E A, et al. Piriformospora indica Alters Na+/K+ Homeostasis, Antioxidant Enzymes and LeNHX1 Expression of Greenhouse Tomato Grown under Salt Stress [J]. Scientia Horticulturae, 2019, 256: 108532-108540. doi: 10.1016/j.scienta.2019.05.059
PRASAD D, VERMA N, BAKSHI M, et al. Functional Characterization of a Magnesium Transporter of Root Endophytic Fungus Piriformospora indica [J]. Frontiers in Microbiology, 2019, 9: 3231. doi: 10.3389/fmicb.2018.03231
GILL S S, GILL R, TRIVEDI D K, et al. Piriformospora indica: Potential and Significance in Plant Stress Tolerance [J]. Frontiers in Microbiology, 2016, 22(7): 332.
SU Z Z, WANG T, SHRIVASTAVA N, et al. Piriformospora indica Promotes Growth, Seed Yield and Quality of Brassica napus L. [J]. Microbiological Research, 2017, 199: 29-39. doi: 10.1016/j.micres.2017.02.006
WU M Y, WEI Q, XU L, et al. Piriformospora indica Enhances Phosphorus Absorption by Stimulating Acid Phosphatase Activities and Organic Acid Accumulation in Brassica napus [J]. Plant and Soil, 2018, 432(1/2): 333-344.
XU L, WANG A A, WANG J, et al. Piriformospora indica Confers Drought Tolerance on Zea mays L. through Enhancement of Antioxidant Activity and Expression of Drought-related Genes [J]. The Crop Journal, 2017, 5(3): 251-258. doi: 10.1016/j.cj.2016.10.002
WALLER F, ACHATZ B, BALTRUSCHAT H, et al. The Endophytic Fungus Piriformospora indica Reprograms Barley to Salt-stress Tolerance, Disease Resistance, and Higher Yield [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(38): 13386-13391. doi: 10.1073/pnas.0504423102
SERFLING A, WIRSEL S G R, LIND V, et al. Performance of the Biocontrol Fungus Piriformospora indica on Wheat Under Greenhouse and Field Conditions [J]. Phytopathology, 2007, 97(4): 523-531. doi: 10.1094/PHYTO-97-4-0523
SUN C, SHAO Y Q, VAHABI K, et al. The Beneficial Fungus Piriformospora indica Protects Arabidopsis from Verticillium dahliae Infection by Downregulation Plant Defense Responses [J]. BMC Plant Biology, 2014, 14: 268. doi: 10.1186/s12870-014-0268-5
KUMAR M, YADAV V, TUTEJA N, et al. Antioxidant Enzyme Activities in Maize Plants Colonized with Piriformospora indica [J]. Microbiology, 2009, 155(3): 780-790. doi: 10.1099/mic.0.019869-0
NARAYAN O P, VERMA N, SINGH A K, et al. Antioxidant Enzymes in Chickpea Colonized by Piriformospora indica Participate in Defense Against the Pathogen Botrytis cinerea [J]. Scientific Reports, 2017, 7: 13553. doi: 10.1038/s41598-017-12944-w
李伟, 陈怀谷, 张爱香, 等. 核盘菌和灰葡萄孢基因组中的简单重复序列分析[J]. 遗传, 2007, 29(9): 1154-1160. doi: 10.3321/j.issn:0253-9772.2007.09.021
MEI J, QIAN L, DISI J O, et al. Identification of Resistant Sources Against Sclerotinia sclerotiorum in Brassica species with Emphasis on B. oleracea [J]. Euphytica, 2011, 177(3): 393-399. doi: 10.1007/s10681-010-0274-0
JOHNSON J M, SHERAMETI I, LUDWIG A, et al. Protocols for Arabidopsis thaliana and Piriformospora indica Co-cultivation—A Model System to Study Plant Beneficial Traits [J]. Endocytobiosis and Cell Research, 2011, 101: 101-113.
LEROCH M, MERNKE D, KOPPENHOEFER D, et al. Living Colorsin The Gray Mold Pathogen Botrytis cinerea: Codon-optimized Genes Encoding Green Fluorescent Protein and mCherry, Which Exhibit Bright Fluorescence [J]. Applied and Environmental Microbiology, 2011, 77(9): 2887-2897. doi: 10.1128/AEM.02644-10
ROLLINS J A. The Sclerotinia sclerotiorum pac1 Gene is Required for Sclerotial Development and Virulence [J]. Molecular Plant-Microbe Interactions, 2003, 16(9): 785-795. doi: 10.1094/MPMI.2003.16.9.785
张斌, 乔俊卿, 梁雪杰, 等. 番茄枯萎病菌和青枯病菌拮抗细菌的评价[J]. 植物保护学报, 2015, 42(3): 353-361. doi: 10.13802/j.cnki.zwbhxb.2015.03.011
王慧俐. 印度梨形孢Piriformospora indica对果蔬生长、品质及抗病性的影响及其相关机制研究[D]. 杭州: 浙江大学, 2015.
LIVAK K J, SCHMITTGEN T D. Analysis of Relative Gene Expression Data Using Real-time Quantitative PCR and the 2-ΔΔCT Method [J]. Methods, 2013, 25(4): 402-408.
MILLER A F. Superoxide Dismutases: Active Sites That Save, but a Protein That Kills [J]. Current Opinion in Chemical Biology, 2004, 8(2): 162-168. doi: 10.1016/j.cbpa.2004.02.011
CHEN C B, HAREL A, GOROVOITS R, et al. MAPK Regulation of Sclerotial Development in Sclerotinia sclerotiorum is Linked with pH and cAMP Sensing [J]. Molecular Plant-Microbe Interactions, 2004, 17(4): 404-413. doi: 10.1094/MPMI.2004.17.4.404
ZHU W J, WEI W, FU Y P, et al. A Secretory Protein of Necrotrophic Fungus Sclerotinia sclerotiorum That Suppresses Host Resistance [J]. PLoS One, 2013, 8(1): e53901. doi: 10.1371/journal.pone.0053901
DUAN Y B, GE C Y, LIU S M, et al. A Two-component Histidine Kinase Shk1 Controls Stress Response, Sclerotial Formation and Fungicide Resistance in Sclerotinia sclerotiorum [J]. Molecular Plant Pathology, 2013, 14(7): 708-718. doi: 10.1111/mpp.12041
高俊明, 马丽娜, 李欣, 等. 盾壳霉对核盘菌的拮抗作用研究[J]. 植物保护, 2006, 32(6): 66-70.
GHAHFAROKHI R M, GOLTAPEH M. Potential of the Root Endophytic Fungus Piriformospora indica; Sebacina vermifera and Trichoderma Species in Biocontrol of Take-all Disease of Wheat Gaeumannomyces graminis var. Tritici in vitro, in Iran [J]. International Journal of Agricultural Technology, 2010, 6: 11-18.
MOHARAM M H A, MOHAMED M, NEGIM O. Improvement of Soil Properties, Growth of Cucumber and Protection against Fusarium Wilt by Piriformospora indica and Two Industrial Organic Wastes [J]. Notulae Scientia Biologicae, 2017, 9(4): 525-538. doi: 10.15835/nsb9410179
SINGH B N, HIDANGMAYUM A, SINGH A, et al. Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms [M]. Verlag, Germany: Springer, 2019.
SHRIVASTAVA N, JIANG L, LI P, et al. Proteomic Approach to Understand the Molecular Physiology of Symbiotic Interaction between Piriformospora indica and Brassica napus [J]. Scientific Reports, 2018, 8(1): 5773-5785. doi: 10.1038/s41598-018-23994-z
MURI E, NIETO M, SINDELAR R, et al. Hydroxamic Acids as Pharmacological Agents [J]. Current Medicinal Chemistry, 2002, 9(17): 1631-1653. doi: 10.2174/0929867023369402
COPAJA S V, VILLARROEL E, BRAVO H R, et al. Hydroxamic Acids in Secale cereale L. and the Relationship with Their Antifeedant and Allelopathic Properties [J]. Zeitschrift fur Naturforschung C, Journal of Biosciences, 2006, 61(9/10): 670-676.
ADAMS P B. Ecology of Sclerotinia Species [J]. Phytopathology, 1979, 69(8): 896. doi: 10.1094/Phyto-69-896
MOLITOR A, ZAJIC D, VOLL L M, et al. Barley Leaf Transcriptome and Metabolite Analysis Reveals New Aspects of Compatibility and Piriformospora indica-mediated Systemic Induced Resistance to Powdery Mildew [J]. Molecular Plant-Microbe Interactions, 2011, 24(12): 1427-1439.
FAKHRO A, ANDRADE-LINARES D R, von BARGEN S, et al. Impact of Piriformospora indica on Tomato Growth and on Interaction with Fungal and Viral Pathogens [J]. Mycorrhiza, 2010, 20(3): 191-200.