LERMAN P M. Fitting Segmented Regression Models by Grid Search [J]. Journalofthe Royal Statistical Society SeriesC: Applied Statistics, 1980, 29(1) : 77-84.
|
HINKLEY D, CHAPMAN P, RUNGER G. Change-Point Problems [R]. Minnesota: Universityof Minnesota, 1980.
|
MUGGEO V M R. Estimating Regression Models with Unknown Break-Points [J]. Statistics in Medicine, 2003, 22(19) : 3055-3071. doi: 10.1002/sim.1545
|
ZHONG W, WAN C, ZHANG W Y. Estimation and Inference for Multi-Kink Quantile Regression [J]. Journalof Business & Economic Statistics, 2022, 40(3) : 1123-1139.
|
SHA N. On Testingthe Change-Pointinthe Longitudinal Bent Line Quantile Regression Model [D]. Columbia: Columbia University, 2011.
|
WAN C, ZHONG W, ZHANG W Y, et al. Multikink Quantile Regressionfor Longitudinal Data with Application to Progesterone Data Analysis [EB/OL]. (2021-12-20) [2022-08-02]. https://arxiv.org/pdf/2112.05045.pdf.
|
QU A N, LINDSAY B G, LI B. Improving Generalised Estimating Equations Using QuadraticInference Functions [J]. Biometrika, 2000, 87(4) : 823-836. doi: 10.1093/biomet/87.4.823
|
YE H J, PAN J X. Modelling of Covariance Structuresin Generalised Estimating Equationsfor Longitudinal Data [J]. Biometrika, 2006, 93(4) : 927-941. doi: 10.1093/biomet/93.4.927
|
HUBER PJ. Robust Estimationofa Location Parameter [J]. The Annals of Mathematical Statistics, 1964, 35(1) : 73-101. doi: 10.1214/aoms/1177703732
|
JURECKOVAJ. Nonparametric Estimateof Regression Coefficients [J]. The Annals of Mathematical Statistics, 1971, 42(4) : 1328-1338. doi: 10.1214/aoms/1177693245
|
FOX M, RUBIN H. Admissibilityof Quantile Estimates ofa Single Location Parameter [J]. The Annals of Mathematical Statistics, 1964, 35(3) : 1019-1030. doi: 10.1214/aoms/1177700518
|
WANG X Q, JIANG Y L, HUANG M, etal. Robust Variable Selection with Exponential Squared Loss [J]. Journalofthe American Statistical Association, 2013, 108(502) : 632-643. doi: 10.1080/01621459.2013.766613
|
WANG K N, LIN L. Robust Structure Identification and Variable Selectionin Partial Linear Varying Coefficient Models[J]. Journal of Statistical Planning and Inference, 2016, 174: 153-168. doi: 10.1016/j.jspi.2016.01.006
|
SONG Y Q, JIAN L, LIN L. Robust Exponential Squared Loss-Based Variable Selectionfor High-Dimensional SingleIndex Varying-Coefficient Model [J]. Journal of Computationaland Applied Mathematics, 2016, 308: 330-345. doi: 10.1016/j.cam.2016.05.030
|
LV J, GUO C H, WUJ B. Subject-Wise Empirical Likelihood Inference for RobustJoint Mean-Covariance Model withLongitudinal Data [J]. Statistics andItsInterface, 2019, 12(4) : 617-630. doi: 10.4310/SII.2019.v12.n4.a10
|
WANG L. GEE Analysis of Clustered Binary Data with Diverging Number of Covariates [J]. The Annals of Statistics, 2011, 39(1) : 389-417.
|