LIANG K Y, ZEGER S L. Longitudinal Data Analysis Using Generalized Linear Models [J]. Biometrika, 1986, 73(1) : 13-22. doi: 10.1093/biomet/73.1.13
|
FANJ Q, LI R Z. Variable Selection via Nonconcave Penalized Likelihood andIts Oracle Properties [J]. Journal oftheAmerican Statistical Association, 2001, 96(456) : 1348-1360. doi: 10.1198/016214501753382273
|
ZHANG C H. Nearly Unbiased Variable Selection under Minimax Concave Penalty [J]. The Annals of Statistics, 2010, 38(2) : 894-942.
|
WANG L, ZHOUJ H, QU A N. Penalized Generalized Estimating Equationsfor High-Dimensional Longitudinal DataAnalysis [J]. Biometrics, 2012, 68(2) : 353-360. doi: 10.1111/j.1541-0420.2011.01678.x
|
DZIAKJ, LI R. Penalized Generalized Estimating Equationsfor Variable Selection with Longitudinal Data [M]. Berlin: Springer, 2020.
|
KOENKER R, BASSETT G. Regression Quantiles [J]. Econometrica, 1978, 46(1) : 33-50. doi: 10.2307/1913643
|
CHEN L, WEI LJ, PARZEN MI. Quantile Regressionfor Correlated Observations [M]//Proceedings ofthe Second
Seattle Symposiumin Biostatistics. New York: Springer New York, 2004: 51-69.
|
LU X M, FAN Z Z. Weighted Quantile Regressionfor Longitudinal Data [J]. Computational Statistics, 2015, 30(2) : 569-592. doi: 10.1007/s00180-014-0550-x
|
KOENKER R. Quantile Regressionfor Longitudinal Data [J]. Journal of Multivariate Analysis, 2004, 91(1) : 74-89. doi: 10.1016/j.jmva.2004.05.006
|
NEWEY W K, POWELLJ L. Asymmetric Least Squares Estimationand Testing [J]. Econometrica, 1987, 55(4) : 819-847. doi: 10.2307/1911031
|
GU Y, ZOU H. High-Dimensional Generalizations of Asymmetric Least Squares Regressionand Their Applications [J]. The Annals of Statistics, 2016, 44(6) : 2661-2694.
|
LIAO L N, PARK C, CHOI H. Penalized Expectile Regression: an Alternativeto Penalized Quantile Regression [J]. Annals oftheInstituteof Statistical Mathematics, 2019, 71(2) : 409-438. doi: 10.1007/s10463-018-0645-1
|
BARRY A, OUALKACHA K, CHARPENTIER A. A New GEE Method to Account for Heteroscedasticity UsingAsymmetric Least-Square Regressions [J]. Journal of Applied Statistics, 2022, 49(14) : 3564-3590. doi: 10.1080/02664763.2021.1957789
|
周霖, 罗幼喜. 混合效应模型的双MCP惩罚分位回归研究[J]. 华中师范大学学报(自然科学版), 2021, 55(6) : 991-999, 1012.
|
CORNWELL C, RUPERT P. Efficient Estimation with Panel Data: an Empirical Comparison of Instrumental VariablesEstimators [J]. Journal of Applied Econometrics, 1988, 3(2) : 149-155. doi: 10.1002/jae.3950030206
|