CHEN R Z, DENG Y W, DING Y L, et al. Rice Functional Genomics: Decades' Efforts and Roads Ahead[J]. Science China Life Sciences, 2022, 65(1): 33-92. doi: 10.1007/s11427-021-2024-0
|
WEI L Y, ZHANG D F, XIANG F, et al. Differentially Expressed miRNAs Potentially Involved in the Regulation of Defense Mechanism to Drought Stress in Maize Seedlings[J]. International Journal of Plant Sciences, 2009, 170(8): 979-989. doi: 10.1086/605122
|
BARTEL D. microRNAs Genomics, Biogenesis, Mechanism, and Function[J]. Cell, 2004, 116: 281-297. doi: 10.1016/S0092-8674(04)00045-5
|
CHEN X M. microRNA Biogenesis and Function in Plants[J]. FEBS Letters, 2005, 579(26): 5923-5931. doi: 10.1016/j.febslet.2005.07.071
|
JONES-RHOADES M W, BARTEL D P. Computational Identification of Plant microRNAs and Their Targets, Including a Stress-Induced miRNA[J]. Molecular Cell, 2004, 14(6): 787-799. doi: 10.1016/j.molcel.2004.05.027
|
ZHAO B T, LIANG R Q, GE L F, et al. Identification of Drought-Induced microRNAs in Rice[J]. Biochemical and Biophysical Research Communications, 2007, 354(2): 585-590. doi: 10.1016/j.bbrc.2007.01.022
|
BARRERA-FIGUEROA B E, GAO L, DIOP N N, et al. Identification and Comparative Analysis of Drought-Associated microRNAs in Two Cowpea Genotypes[J]. BMC Plant Biology, 2011, 11: 127. doi: 10.1186/1471-2229-11-127
|
ELDEM V, ÇELIKKOL AKÇAY U, OZHUNER E, et al. Genome-Wide Identification of miRNAs Responsive to Drought in Peach (Prunus Persica) by High-Throughput Deep Sequencing[J]. PLoS One, 2012, 7(12): e50298. doi: 10.1371/journal.pone.0050298
|
LIU H H, TIAN X, LI Y J, et al. Microarray-Based Analysis of Stress-Regulated microRNAs in Arabidopsis Thaliana[J]. RNA, 2008, 14(5): 836-843. doi: 10.1261/rna.895308
|
文晓鹏, 杨鵾. 植物miRNA在应答非生物胁迫上的调控作用[J]. 山地农业生物学报, 2014, 33(6): 1-13, 37. doi: 10.3969/j.issn.1008-0457.2014.06.001
|
ZHOU Z S, HUANG S Q, YANG Z M. Bioinformatic Identification and Expression Analysis of New microRNAs from Medicago Truncatula[J]. Biochemical and Biophysical Research Communications, 2008, 374(3): 538-542. doi: 10.1016/j.bbrc.2008.07.083
|
UM T, CHOI J, PARK T, et al. Rice microRNA171f/SCL6 Module Enhances Drought Tolerance by Regulation of Flavonoid Biosynthesis Genes[J]. Plant Direct, 2022, 6(1): e374.
|
WANG Y T, FENG C, ZHAI Z F, et al. The Apple microR171i-SCARECROW-LIKE PROTEINS26.1 Module Enhances Drought Stress Tolerance by Integrating Ascorbic Acid Metabolism[J]. Plant Physiology, 2020, 184(1): 194-211. doi: 10.1104/pp.20.00476
|
靖艳玲. 早实枳FT类似基因的结构分析和功能验证[D]. 武汉: 华中农业大学, 2013.
|
罗国涛. 柑橘砧木根系发育相关基因的发掘及功能鉴定[D]. 重庆: 西南大学, 2020.
|
胡洲. 柑橘砧穗互作中microRNA对果实糖酸含量的影响[D]. 重庆: 西南大学, 2022.
|
GU W J, WANG X F, ZHAI C Y, et al. Selection on Synonymous Sites for Increased Accessibility around miRNA Binding Sites in Plants[J]. Molecular Biology and Evolution, 2012, 29(10): 3037-3044. doi: 10.1093/molbev/mss109
|
ASHA S, NISHA J, SONIYA E V. In Silico Characterisation and Phylogenetic Analysis of Two Evolutionarily Conserved miRNAs (miR166 and miR171) from Black Pepper (Piper nigrum L. )[J]. Plant Molecular Biology Reporter, 2013, 31(3): 707-718. doi: 10.1007/s11105-012-0532-5
|
ZHANG B H, PAN X P, CANNON C H, et al. Conservation and Divergence of Plant microRNA Genes[J]. The Plant Journal, 2006, 46(2): 243-259. doi: 10.1111/j.1365-313X.2006.02697.x
|
LLAVE C, XIE Z X, KASSCHAU K D, et al. Cleavage of SCARECROW-LIKE mRNA Targets Directed by a Class of Arabidopsis miRNA[J]. Science, 2002, 297(5589): 2053-2056. doi: 10.1126/science.1076311
|
REINHART B J, WEINSTEIN E G, RHOADES M W, et al. microRNAs in Plants[J]. Genes & Development, 2002, 16(13): 1616-1626.
|
SCHULZE S, SCHÄFER B N, PARIZOTTO E A, et al. LOST MERISTEMS Genes Regulate Cell Differentiation of Central Zone Descendants in Arabidopsis Shoot Meristems[J]. The Plant Journal, 2010, 64(4): 668-678. doi: 10.1111/j.1365-313X.2010.04359.x
|
HUANG W, PENG S Y, XIAN Z Q, et al. Overexpression of a Tomato miR171 Target Gene SlGRAS24 Impacts Multiple Agronomical Traits via Regulating Gibberellin and Auxin Homeostasis[J]. Plant Biotechnology Journal, 2017, 15(4): 472-488. doi: 10.1111/pbi.12646
|
STERNES P R, MOYLE R L. Deep Sequencing Reveals Divergent Expression Patterns within the Small RNA Transcriptomes of Cultured and Vegetative Tissues of Sugarcane[J]. Plant Molecular Biology Reporter, 2015, 33(4): 931-951. doi: 10.1007/s11105-014-0787-0
|
WANG C, HAN J, KORIR N K, et al. Characterization of Target mRNAs for Grapevine microRNAs with an Integrated Strategy of Modified RLM-RACE, Newly Developed PPM-RACE and QPCRS[J]. Journal of Plant Physiology, 2013, 170(10): 943-957. doi: 10.1016/j.jplph.2013.02.005
|
姚德恒. 迷迭香细胞培养与MeJA对其重要次生代谢物的影响及分子机制[D]. 福州: 福建农林大学, 2021.
|
李宏宇. 百合体胚发生相关基因MIR171的克隆及其启动子功能分析[D]. 沈阳: 沈阳农业大学, 2018.
|
LI K, LIU Z, XING L B, et al. MiRNAs Associated with Auxin Signaling, Stress Response, and Cellular Activities Mediate Adventitious Root Formation in Apple Rootstocks[J]. Plant Physiology and Biochemistry, 2019, 139: 66-81. doi: 10.1016/j.plaphy.2019.03.006
|
CHEN Q J, DENG B H, GAO J E, et al. A MiRNA-Encoded Small Peptide, Vvi-miPEP171d1, Regulates Adventitious Root Formation[J]. Plant Physiology, 2020, 183(2): 656-670. doi: 10.1104/pp.20.00197
|
CHO J, PASZKOWSKI J. Regulation of Rice Root Development by a Retrotransposon Acting as a microRNA Sponge[J]. eLife, 2017, 6: 30038. doi: 10.7554/eLife.30038
|
LAURESSERGUES D, COUZIGOU J M, CLEMENTE H S, et al. Primary Transcripts of microRNAs Encode Regulatory Peptides[J]. Nature, 2015, 520(7545): 90-93. doi: 10.1038/nature14346
|
DI LAURENZIO L, WYSOCKA-DILLER J, MALAMY J E, et al. The SCARECROW Gene Regulates an Asymmetric Cell Division that is Essential for Generating the Radial Organization of the Arabidopsis Root[J]. Cell, 1996, 86(3): 423-433. doi: 10.1016/S0092-8674(00)80115-4
|
HWANG E W, SHIN S J, YU B K, et al. miR171 Family Members are Involved in Drought Response in Solanum tuberosum[J]. Journal of Plant Biology, 2011, 54(1): 43-48. doi: 10.1007/s12374-010-9141-8
|