谭永滨, 黄敏婷, 程朋根, 等. 全球湖泊湿地研究的文献计量分析及可视化表达[J]. 西南大学学报(自然科学版), 2021, 43(2): 120-129.
|
WU H M, ZHANG J, NGO H H, et al. Evaluating the Sustainability of Free Water Surface Flow Constructed Wetlands: Methane and Nitrous Oxide Emissions [J]. Journal of Cleaner Production, 2017, 147: 152-156. doi: 10.1016/j.jclepro.2017.01.091
|
LI P Z, WANG S Y, PENG Y Z, et al. The Synergistic Effects of Dissolved Oxygen and pH on N2O Production in Biological Domestic Wastewater Treatment under Nitrifying Conditions [J]. Environmental Technology, 2015, 36(13): 1623-1631. doi: 10.1080/09593330.2014.1002862
|
曾凤铃, 邹玉霞, 张卫华, 等. 生物炭用量与粒径对紫色土水分入渗及再分布特征的影响[J]. 西南大学学报(自然科学版), 2022, 44(12): 136-144.
|
FENG L K, LIU Y, ZHANG J Y, et al. Dynamic Variation in Nitrogen Removal of Constructed Wetlands Modified by Biochar for Treating Secondary Livestock Effluent under Varying Oxygen Supplying Conditions [J]. Journal of Environmental Management, 2020, 260: 110152. doi: 10.1016/j.jenvman.2020.110152
|
邓朝仁, 梁银坤, 黄磊, 等. 生物炭对潜流人工湿地污染物去除及N2O排放影响[J]. 环境科学, 2019, 40(6): 2840-2846.
|
DENG C R, HUANG L, LIANG Y K, et al. Response of Microbes to Biochar Strengthen Nitrogen Removal in Subsurface Flow Constructed Wetlands: Microbial Community Structure and Metabolite Characteristics [J]. Science of the Total Environment, 2019, 694: 133687. doi: 10.1016/j.scitotenv.2019.133687
|
LIANG Y K, WANG Q H, HUANG L, et al. Insight into the Mechanisms of Biochar Addition on Pollutant Removal Enhancement and Nitrous Oxide Emission Reduction in Subsurface Flow Constructed Wetlands: Microbial Community Structure, Functional Genes and Enzyme Activity [J]. Bioresource Technology, 2020, 307: 123249. doi: 10.1016/j.biortech.2020.123249
|
CHEN X, ZHU H, BAÑUELOS G, et al. Biochar Reduces Nitrous Oxide but Increases Methane Emissions in Batch Wetland Mesocosms [J]. Chemical Engineering Journal, 2020, 392: 124842. doi: 10.1016/j.cej.2020.124842
|
DAWAR K, KHAN A, SARDAR K, et al. Effects of the Nitrification Inhibitor Nitrapyrin and Mulch on N2O Emission and Fertilizer Use Efficiency Using 15N Tracing Techniques [J]. Science of the Total Environment, 2021, 757: 143739. doi: 10.1016/j.scitotenv.2020.143739
|
CASTRO-GONZALEZ M, GONZALEZ A. Net Nitrous Oxide Production from an Urban Wetland in Colombia is Mainly Influenced by Seasonal Changes [J]. Limnetica, 2020, 39(2): 693-709.
|
STARR S F, MORTAZAVI B, TATARIW C, et al. Poor Recovery of Fungal Denitrification Limits Nitrogen Removal Capacity in a Constructed Gulf Coast Marsh [J]. Soil Biology and Biochemistry, 2022, 170: 108692. doi: 10.1016/j.soilbio.2022.108692
|
MORSE J L, BERNHARDT E S. Using 15N Tracers to Estimate N2O and N2 Emissions from Nitrification and Denitrification in Coastal Plain Wetlands under Contrasting Land-Uses [J]. Soil Biology and Biochemistry, 2013, 57: 635-643. doi: 10.1016/j.soilbio.2012.07.025
|
WANG S Y, WANG W D, LIU L, et al. Microbial Nitrogen Cycle Hotspots in the Plant-Bed/Ditch System of a Constructed Wetland with N2O Mitigation [J]. Environmental Science and Technology, 2018, 52(11): 6226-6236. doi: 10.1021/acs.est.7b04925
|
TORTOSA G, CORREA D, SÁNCHEZ-RAYA A J, et al. Effects of Nitrate Contamination and Seasonal Variation on the Denitrification and Greenhouse Gas Production in La Rocina Stream (Doñana National Park, SW Spain) [J]. Ecological Engineering, 2011, 37(4): 539-548. doi: 10.1016/j.ecoleng.2010.06.029
|
HUANG L, CHEN Y C, LIU G, et al. Non-Isothermal Pyrolysis Characteristics of Giant Reed (Arundo Donax L.) Using Thermogravimetric Analysis [J]. Energy, 2015, 87: 31-40. doi: 10.1016/j.energy.2015.04.089
|
国家环境保护总局, 水和废水监测分析方法编委会. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
|
王宁, 黄磊, 罗星, 等. 生物炭添加对曝气人工湿地脱氮及氧化亚氮释放的影响[J]. 环境科学, 2018, 39(10): 4505-4511.
|
姜丽秀. 好氧亚硝化颗粒污泥工艺及其N2O释放的研究[D]. 济南: 山东大学, 2012.
|
LI K, FANG F, WANG H, et al. Pathways of N Removal and N2O Emission from a One-Stage Autotrophic N Removal Process under Anaerobic Conditions [J]. Scientific Reports, 2017, 7: 42072. doi: 10.1038/srep42072
|
KONG X W, YING S H, YANG L C, et al. Microbial and Isotopomer Analysis of N2O Generation Pathways in Ammonia Removal Biofilters [J]. Chemosphere, 2020, 251: 126357. doi: 10.1016/j.chemosphere.2020.126357
|
王清华, 赵亚琦, 黄磊, 等. 间歇曝气生物炭湿地中污染物的去除特征及微生物种群结构[J]. 环境工程学报, 2021, 15(6): 2118-2125.
|
CHEN S L, LING J, BLANCHETON J P. Nitrification Kinetics of Biofilm as Affected by Water Quality Factors [J]. Aquacultural Engineering, 2006, 34(3): 179-197. doi: 10.1016/j.aquaeng.2005.09.004
|
FAN J L, ZHANG J, GUO W S, et al. Enhanced Long-Term Organics and Nitrogen Removal and Associated Microbial Community in Intermittently Aerated Subsurface Flow Constructed Wetlands [J]. Bioresource Technology, 2016, 214: 871-875. doi: 10.1016/j.biortech.2016.05.083
|
DENG S J, CHEN J Q, CHANG J J. Application of Biochar as an Innovative Substrate in Constructed Wetlands/Biofilters for Wastewater Treatment: Performance and Ecological Benefits [J]. Journal of Cleaner Production, 2021, 293: 126156. doi: 10.1016/j.jclepro.2021.126156
|
刘秀红, 杨庆, 吴昌永, 等. 不同污水生物脱氮工艺中N2O释放量及影响因素[J]. 环境科学学报, 2006, 26(12): 1940-1947.
|
DONOSO N, VAN OIRSCHOT D, KUMAR BISWAS J, et al. Impact of Aeration on the Removal of Organic Matter and Nitrogen Compounds in Constructed Wetlands Treating the Liquid Fraction of Piggery Manure [J]. Applied Sciences, 2019, 9(20): 4310. doi: 10.3390/app9204310
|
JI B H, CHEN J Q, LI W, et al. Greenhouse Gas Emissions from Constructed Wetlands are Mitigated by Biochar Substrates and Distinctly Affected by Tidal Flow and Intermittent Aeration Modes [J]. Environmental Pollution, 2021, 271: 116328. doi: 10.1016/j.envpol.2020.116328
|
LIANG D B, GUO W, LI D Y, et al. Enhanced Aerobic Granulation for Treating Low-Strength Wastewater in an Anaerobic-Aerobic-Anoxic Sequencing Batch Reactor by Selecting Slow-Growing Organisms and Adding Carriers [J]. Environmental Research, 2022, 205: 112547. doi: 10.1016/j.envres.2021.112547
|
LYU W L, HUANG L, XIAO G Q, et al. Effects of Carbon Sources and COD/N Ratio on N2O Emissions in Subsurface Flow Constructed Wetlands [J]. Bioresource Technology, 2017, 245: 171-181. doi: 10.1016/j.biortech.2017.08.056
|
WU Z S, XU F, YANG C, et al. Highly Efficient Nitrate Removal in a Heterotrophic Denitrification System Amended with Redox-Active Biochar: a Molecular and Electrochemical Mechanism [J]. Bioresource Technology, 2019, 275: 297-306. doi: 10.1016/j.biortech.2018.12.058
|
TOYODA S, SUZUKI Y, HATTORI S, et al. Isotopomer Analysis of Production and Consumption Mechanisms of N2O and CH4 in an Advanced Wastewater Treatment System [J]. Environmental Science and Technology, 2011, 45(3): 917-922. doi: 10.1021/es102985u
|
WEI J, IBRAIM E, BRVGGEMANN N, et al. First Real-Time Isotopic Characterisation of N2O from Chemodenitrification [J]. Geochimica et Cosmochimica Acta, 2019, 267: 17-32. doi: 10.1016/j.gca.2019.09.018
|
JINUNTUYA-NORTMAN M, SUTKA R L, OSTROM P H, et al. Isotopologue Fractionation during Microbial Reduction of N2O within Soil Mesocosms as a Function of Water-Filled Pore Space [J]. Soil Biology and Biochemistry, 2008, 40(9): 2273-2280. doi: 10.1016/j.soilbio.2008.05.016
|
TOYODA S, YOSHIDA N, KOBA K. Isotopocule Analysis of Biologically Produced Nitrous Oxide in Various Environments [J]. Mass Spectrometry Reviews, 2017, 36(2): 135-160. doi: 10.1002/mas.21459
|
PENG L, NI B J, ERLER D, et al. The Effect of Dissolved Oxygen on N2O Production by Ammonia-Oxidizing Bacteria in an Enriched Nitrifying Sludge [J]. Water Research, 2014, 66: 12-21. doi: 10.1016/j.watres.2014.08.009
|
TUMENDELGER A, TOYODA S, YOSHIDA N. Isotopic Analysis of N2O Produced in a Conventional Wastewater Treatment System Operated under Different Aeration Conditions [J]. Rapid Communications in Mass Spectrometry, 2014, 28(17): 1883-1892. doi: 10.1002/rcm.6973
|
YANG Q, CUI B, ZHOU Y, et al. Impact of Gas-Water Ratios on N2O Emissions in Biological Aerated Filters and Analysis of N2O Emissions Pathways [J]. Science of the Total Environment, 2020, 723: 137984. doi: 10.1016/j.scitotenv.2020.137984
|
ZOU X, ZHOU Y, GAO M J, et al. Effective N2O Emission Control during the Nitritation/Denitritation Treatment of Ammonia Rich Wastewater [J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107234. doi: 10.1016/j.jece.2022.107234
|
PENG L, NI B J, YE L, et al. The Combined Effect of Dissolved Oxygen and Nitrite on N2O Production by Ammonia Oxidizing Bacteria in an Enriched Nitrifying Sludge [J]. Water Research, 2015, 73: 29-36. doi: 10.1016/j.watres.2015.01.021
|