姜哲轩, 徐芳森. 植物硼营养高效的分子调控途径[J]. 华中农业大学学报, 2023, 42(6): 43-49.
卢一铭, 徐龙水, 徐卫红. 不同供硼水平对番茄营养和风味品质的影响[J]. 西南大学学报(自然科学版), 2023, 45(7): 107-122.
RIAZ M, KAMRAN M, EL-ESAWI M A, et al. Boron-Toxicity Induced Changes in Cell Wall Components, Boron Forms, and Antioxidant Defense System in Rice Seedlings[J]. Ecotoxicology and Environmental Safety, 2021, 216: 112192. doi: 10.1016/j.ecoenv.2021.112192
WU X W, RIAZ M, YAN L, et al. Boron Deficiency in Trifoliate Orange Induces Changes in Pectin Composition and Architecture of Components in Root Cell Walls[J]. Frontiers in Plant Science, 2017, 8: 1882. doi: 10.3389/fpls.2017.01882
苏静, 祝令成, 刘茜, 等. 果实糖代谢与含量调控的研究进展[J]. 果树学报, 2022, 39(2): 266-279.
尚乐乐, 宋建文, 王嘉颖, 等. 番茄果实品质形成及其分子机理研究进展[J]. 中国蔬菜, 2019(4): 21-28.
WANG G N, DITUSA S F, OH D H, et al. Cross Species Multi-Omics Reveals Cell Wall Sequestration and Elevated Global Transcript Abundance as Mechanisms of Boron Tolerance in Plants[J]. The New Phytologist, 2021, 230(5): 1985-2000. doi: 10.1111/nph.17295
陈玲玲. 敖汉苜蓿小花与种子响应硼胁迫的蛋白质组学与代谢组学分析[D]. 北京: 中国农业大学, 2017.
SHKOL'NIK M Y, Il'INSKAYA N L. Effect of Boron Deficiency on the Activity of Glucose-6-Phosphate Dehydrogenase in Plants with Different Boron Requirements. [J]. Fiziologiya Rastenij, 1975, 22(4): 801-805.
GARCIA-GONZÁLEZ M, MATEO P, BONILLA I. Effect of Boron Deficiency on Photosynthesis and Reductant Sources and Their Relationship with Nitrogenase Activity in Anabaena PCC 7119[J]. Plant Physiology, 1990, 93(2): 560-565. doi: 10.1104/pp.93.2.560
WANG Z H, WANG Z F, CHEN S S, et al. Proteomics Reveals the Adaptability Mechanism of Brassica napus to Short-Term Boron Deprivation[J]. Plant and Soil, 2011, 347(1): 195-210.
TIEMAN D, ZHU G T, RESENDE M F R Jr, et al. A Chemical Genetic Roadmap to Improved Tomato Flavor[J]. Science, 2017, 355(6323): 391-394. doi: 10.1126/science.aal1556
SMITA S, RAJWANSHI R, LENKA S K, et al. Expression Profile of Genes Coding for Carotenoid Biosynthetic Pathway during Ripening and Their Association with Accumulation of Lycopene in Tomato Fruits[J]. Journal of Genetics, 2013, 92(3): 363-368. doi: 10.1007/s12041-013-0275-6
LIU X A, ZHANG J W, GUO L X, et al. Transcriptome Changes Associated with Boron Deficiency in Leaves of Two Citrus Scion-Rootstock Combinations[J]. Frontiers in Plant Science, 2017, 8: 317.
TOMBULOGLU G, TOMBULOGLU H, SAKCALI M S, et al. High-Throughput Transcriptome Analysis of Barley (Hordeum vulgare) Exposed to Excessive Boron[J]. Gene, 2015, 557(1): 71-81. doi: 10.1016/j.gene.2014.12.012
郭世荣. 无土栽培学[M]. 2版. 北京: 中国农业出版社, 2011.
赵婉伊, 姚云柯, 徐卫红, 等. 外源硒对茎瘤芥硒形态及硒吸收的影响[J]. 食品科学, 2017, 38(1): 105-109.
杨剑虹, 王成林, 代亨林. 土壤农化分析与环境监测[M]. 北京: 中国大地出版社, 2008.
姚改芳, 张绍铃, 曹玉芬, 等. 不同栽培种梨果实中可溶性糖组分及含量特征[J]. 中国农业科学, 2010, 43(20): 4229-4237. doi: 10.3864/j.issn.0578-1752.2010.20.014
崔爽, 白洁, 李国婧, 等. 市售番茄和圣女果果实中番茄红素HPLC检测方法的研究[J]. 内蒙古农业大学学报(自然科学版), 2016, 37(2): 62-66.
WU X L, DU A Q, ZHANG S H, et al. Regulation of Growth in Peach Roots by Exogenous Hydrogen Sulfide Based on RNA-Seq[J]. Plant Physiology and Biochemistry, 2021, 159: 179-192. doi: 10.1016/j.plaphy.2020.12.018
张勇. 番茄SlIPT4基因对叶片衰老和果实番茄红素合成的调控研究[D]. 重庆: 重庆大学, 2018.
董飞, 王传增, 任煜倩, 等. 光质对番茄果实中糖含量和代谢相关酶及基因表达的影响[J]. 植物生理学报, 2018, 54(9): 1507-1515.
AONO Y, ASIKIN Y, WANG N, et al. High-Throughput Chlorophyll and Carotenoid Profiling Reveals Positive Associations with Sugar and Apocarotenoid Volatile Content in Fruits of Tomato Varieties in Modern and Wild Accessions[J]. Metabolites, 2021, 11(6): 398. doi: 10.3390/metabo11060398
徐龙水. 不同供硼水平对番茄营养和风味品质的影响及机理研究[D]. 重庆: 西南大学, 2022.
HEGAZI E S, EL-MOTAIUM R A, YEHIA T A, et al. Effect of Foliar Boron Application on Boron, Chlorophyll, Phenol, Sugars and Hormones Concentration of Olive (Olea europaea L. ) Buds, Leaves, and Fruits[J]. Journal of Plant Nutrition, 2018, 41(6): 749-765. doi: 10.1080/01904167.2018.1425438
JARQUÍN-ENRÍQUEZ L, MERCADO-SILVA E M, MALDONADO J L, et al. Lycopene Content and Color Index of Tomatoes are Affected by the Greenhouse Cover[J]. Scientia Horticulturae, 2013, 155: 43-48. doi: 10.1016/j.scienta.2013.03.004
LAHOZ I, PÉREZ-DE-CASTRO A, VALCÁRCEL M, et al. Effect of Water Deficit on the Agronomical Performance and Quality of Processing Tomato[J]. Scientia Horticulturae, 2016, 200: 55-65. doi: 10.1016/j.scienta.2015.12.051
徐炜南. 硼对番茄生长及果实风味品质的影响[D]. 杨凌: 西北农林科技大学, 2017.
邵旭日, 韩莹琰, 齐长红, 等. 叶面施用不同浓度的硒肥对番茄果实品质的影响[J]. 蔬菜, 2017(8): 25-28. doi: 10.3969/j.issn.1001-8336.2017.08.012
MALLICK S, DAS R C, ZAKIR H M, et al. Effect of Zinc and Boron Application on Lycopene and Nutritional Qualities of Tomato[J]. Journal of Scientific Research and Reports, 2021: 27-36.
李巍. 甘蓝型油菜响应低硼胁迫的转录谱分析及硼高效候选基因的挖掘[D]. 武汉: 华中农业大学, 2015.
CHERIAN S, FIGUEROA C R, NAIR H. 'Movers and Shakers' in the Regulation of Fruit Ripening: A Cross-Dissection of Climacteric Versus Non-Climacteric Fruit[J]. Journal of Experimental Botany, 2014, 65(17): 4705-4722. doi: 10.1093/jxb/eru280
ZHU Z, LIU R L, LI B Q, et al. Characterisation of Genes Encoding Key Enzymes Involved in Sugar Metabolism of Apple Fruit in Controlled Atmosphere Storage[J]. Food Chemistry, 2013, 141(4): 3323-3328. doi: 10.1016/j.foodchem.2013.06.025
QIN G Z, ZHU Z, WANG W H, et al. A Tomato Vacuolar Invertase Inhibitor Mediates Sucrose Metabolism and Influences Fruit Ripening[J]. Plant Physiology, 2016, 172(3): 1596-1611. doi: 10.1104/pp.16.01269
MOUNET F, MOING A, GARCIA V, et al. Gene and Metabolite Regulatory Network Analysis of Early Developing Fruit Tissues Highlights New Candidate Genes for the Control of Tomato Fruit Composition and Development[J]. Plant Physiology, 2009, 149(3): 1505-1528. doi: 10.1104/pp.108.133967
CAI X Z, WANG H S, PANG G C. Flux Control Analysis of a Lactate and Sucrose Metabolic Network at Different Storage Temperatures for Hami Melon (Cucumis melo Var. Saccharinus)[J]. Scientia Horticulturae, 2015, 181: 4-12. doi: 10.1016/j.scienta.2014.10.040
BOTHA F C, BLACK K G. Sucrose Phosphate Synthase and Sucrose Synthase Activity during Maturation of Internodal Tissue in Sugarcane[J]. Functional Plant Biology, 2000, 27(1): 81-85. doi: 10.1071/PP99098
JIANG H Y, LI W, HE B J, et al. Sucrose Metabolism in Grape (Vitis vinifera L. ) Branches under Low Temperature during Overwintering Covered with Soil[J]. Plant Growth Regulation, 2013, 72: 229-238.
TAO X Y, WU Q, LI J Y, et al. Exogenous Methyl Jasmonate Regulates Sucrose Metabolism in Tomato during Postharvest Ripening[J]. Postharvest Biology and Technology, 2021, 181: 111639. doi: 10.1016/j.postharvbio.2021.111639
LI L, LIU Z, JIANG H, et al. Biotechnological Production of Lycopene by Microorganisms[J]. Applied Microbiology and Biotechnology, 2020, 104(24): 10307-10324. doi: 10.1007/s00253-020-10967-4
RONEN G, COHEN M, ZAMIR D, et al. Regulation of Carotenoid Biosynthesis during Tomato Fruit Development: Expression of the Gene for Lycopene Epsilon-Cyclase is Down-Regulated during Ripening and is Elevated in themutant Delta[J]. The Plant Journal, 1999, 17(4): 341-351. doi: 10.1046/j.1365-313X.1999.00381.x
CUNNINGHAM F X, SUN Z, CHAMOVITZ D, et al. Molecular Structure and Enzymatic Function of Lycopene Cyclase from the Cyanobacterium Synechococcus Sp Strain PCC7942[J]. The Plant Cell, 1994, 6(8): 1107-1121.
XIE B X, WEI J J, ZHANG Y T, et al. Supplemental Blue and Red Light Promote Lycopene Synthesis in Tomato Fruits[J]. Journal of Integrative Agriculture, 2019, 18(3): 590-598. doi: 10.1016/S2095-3119(18)62062-3
刘英明, 姜晶, 王晶, 等. 番茄果实成熟过程中番茄红素含量及合成相关基因表达的分析[J]. 植物生理学报, 2013, 49(1): 47-52.