RODERICK W R T, CHIN D D, CUTKOSKY M R, et al. Birds Land Reliably on Complex Surfaces by Adapting Their Foot-Surface Interactions Upon Contact [J]. eLife, 2019, 8: 46415. doi: 10.7554/eLife.46415
|
LEE D N. General Tau Theory: Evolution to Date [J]. Perception, 2009, 38(6): 837-850. doi: 10.1068/pmklee
|
LEE D N, DAVIES M N O, GREEN P R, et al. Visual Control of Velocity of Approach by Pigeons When Landing [J]. Journal of Experimental Biology, 1993, 180(1): 85-104. doi: 10.1242/jeb.180.1.85
|
RODERICK W R T, CUTKOSKY M R, LENTINK D. Bird-Inspired Dynamic Grasping and Perching in Arboreal Environments [J]. Science Robotics, 2021, 6(61): eabj7562. doi: 10.1126/scirobotics.abj7562
|
陈文锐. 欠驱动拟人手的设计及抓握操作理论与方法研究[D]. 武汉: 华中科技大学, 2017.
|
刘闯. 一种欠驱动机器人灵巧手的设计方法研究[D]. 武汉: 华中科技大学, 2020.
|
王清川. 可用于运动目标捕获的行星齿轮式差动欠驱动机械臂研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
|
何秀芸. 多自由度欠驱动仿生机械手机构与造型设计[D]. 沈阳: 东北大学, 2008.
|
CHEN W R, XIONG C H. On Adaptive Grasp with Underactuated Anthropomorphic Hands [J]. Journal of Bionic Engineering, 2016, 13(1): 59-72. doi: 10.1016/S1672-6529(14)60160-8
|
XIONG C H, CHEN W R, SUN B Y, et al. Design and Implementation of an Anthropomorphic Hand for Replicating Human Grasping Functions [J]. IEEE Transactions on Robotics, 2016, 32(3): 652-671. doi: 10.1109/TRO.2016.2558193
|
GAO G, DWIVEDI A, LIAROKAPIS M. An Anthropomorphic Prosthetic Hand with an Active, Selectively Lockable Differential Mechanism: Towards Affordable Dexterity [C] //2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Prague, Czech Republic. IEEE, 2021: 6147-6152.
|
KONTOUDIS G P, LIAROKAPIS M, VAMVOUDAKIS K G. An Adaptive, Humanlike Robot Hand with Selective Interdigitation: Towards Robust Grasping and Dexterous, In-Hand Manipulation [C] //2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids). Toronto, ON, Canada. IEEE, 2019: 251-258.
|
NADAN P M, ANTHONY T M, MICHAEL D M, et al. A Bird-Inspired Perching Landing Gear System [J]. Journal of Mechanisms and Robotics, 2019, 11(6): 061002. doi: 10.1115/1.4044416
|
ZHENG P, XIAO F, NGUYEN P H, et al. Metamorphic Aerial Robot Capable of Mid-Air Shape Morphing for Rapid Perching [J]. Scientific Reports, 2023, 13: 1297. doi: 10.1038/s41598-022-26066-5
|
LIU S S, DONG W, MA Z, et al. Adaptive Aerial Grasping and Perching with Dual Elasticity Combined Suction Cup [J]. IEEE Robotics and Automation Letters, 2020, 5(3): 4766-4773. doi: 10.1109/LRA.2020.3003879
|
杨国栋, 张延峰, 田雨农, 等. 栖息式机器人及栖息式机器人的栖息方法: 202211113536.5 [P]. 2022-10-14.
|
ZHU Y Q, HE X M, ZHANG P X, et al. Perching and Grasping Mechanism Inspired by a Bird's Claw [J]. Machines, 2022, 10(8): 656. doi: 10.3390/machines10080656
|
RODERICK W R T, CUTKOSKY M R, LENTINK D. Touchdown to Take-Off: At the Interface of Flight and Surface Locomotion [J]. Interface Focus, 2017, 7(1): 20160094. doi: 10.1098/rsfs.2016.0094
|
DOYLE C E, BIRD J J, ISOM T A, et al. An Avian-Inspired Passive Mechanism for Quadrotor Perching [J]. ASME Transactions on Mechatronics, 2013, 18(2): 506-517. doi: 10.1109/TMECH.2012.2211081
|
NADAN P M, LEE C L. Computational Design of a Bird-Inspired Perching Landing Gear Mechanism [C] //Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition. Pittsburgh, Pennsylvania, USA. ASME, 2018: 1-8.
|
CHI W C, LOW K H, HOON K H, et al. A Bio-Inspired Adaptive Perching Mechanism for Unmanned Aerial Vehicles [J]. Journal of Robotics and Mechatronics, 2012, 24(4): 642-648. doi: 10.20965/jrm.2012.p0642
|
YU P F, WANG Z H, WONG K C. Exploring Aerial Perching and Grasping with Dual Symmetric Manipulators and Compliant End-Effectors [J]. International Journal of Micro Air Vehicles, 2019, 11: 175682931987741. doi: 10.1177/1756829319877416
|
SEO H, KIM S, KIM H J. Aerial Grasping of Cylindrical Object Using Visual Servoing Based on Stochastic Model Predictive Control [C] //2017 IEEE International Conference on Robotics and Automation (ICRA). Singapore. IEEE, 2017: 6362-6368.
|
GAWEL A, KAMEL M, NOVKOVIC T, et al. Aerial Picking and Delivery of Magnetic Objects with MAVs [C] //2017 IEEE International Conference on Robotics and Automation (ICRA). Singapore. IEEE, 2017: 5746-5752.
|
KIM S J, LEE D Y, JUNG G P, et al. An Origami-Inspired, Self-Locking Robotic Arm That Can Be Folded Flat [J]. Science Robotics, 2018, 3(16): eaar2915. doi: 10.1126/scirobotics.aar2915
|
GHADIOK V, GOLDIN J, REN W. On the Design and Development of Attitude Stabilization, Vision-Based Navigation, and Aerial Gripping for a Low-Cost Quadrotor [J]. Autonomous Robots, 2012, 33(1): 41-68.
|
DING X L, GUO P, XU K, et al. A Review of Aerial Manipulation of Small-Scale Rotorcraft Unmanned Robotic Systems [J]. Chinese Journal of Aeronautics, 2018, 32(1): 200-214.
|
FISHMAN J, UBELLACKER S, HUGHES N, et al. Dynamic Grasping with a "Soft" Drone: From Theory to Practice [EB/OL]. (2021-10-01) [2023-11-23]. http://arxiv.org/abs/2103.06465.
|
HANG K Y, LYU X M, SONG H R, et al. Perching and Resting: A Paradigm for UAV Maneuvering with Modularized Landing Gears [J]. Science Robotics, 2019, 4(28): eaau6637. doi: 10.1126/scirobotics.aau6637
|
POPEK K M, JOHANNES M S, WOLFE K C, et al. Autonomous Grasping Robotic Aerial System for Perching (AGRASP) [C] //2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain. IEEE, 2018: 1-9.
|
ZHANG H J, SUN J F, ZHAO J G. Compliant Bistable Gripper for Aerial Perching and Grasping [C] //2019 International Conference on Robotics and Automation (ICRA). Montreal, QC, Canada. IEEE, 2019: 1248-1253.
|
NGUYEN H N, SIDDALL R, STEPHENS B, et al. A Passively Adaptive Microspine Grapple for Robust, Controllable Perching [C] //2019 2nd IEEE International Conference on Soft Robotics (RoboSoft). Seoul, Korea (South). IEEE, 2019: 80-87.
|
LUO C, YU L J, REN P. A Vision-Aided Approach to Perching a Bioinspired Unmanned Aerial Vehicle [J]. IEEE Transactions on Industrial Electronics, 2018, 65(5): 3976-3984. doi: 10.1109/TIE.2017.2764849
|
ZHANG K T, CHERMPRAYONG P, TZOUMANIKAS D, et al. Bioinspired Design of a Landing System with Soft Shock Absorbers for Autonomous Aerial Robots [J]. Journal of Field Robotics, 2019, 36(1): 230-251. doi: 10.1002/rob.21840
|
DERMITZAKIS K, CARBAJAL J P, MARDEN J H. Scaling Laws in Robotics [J]. Procedia Computer Science, 2011, 7: 250-252. doi: 10.1016/j.procs.2011.09.038
|
CHEN T G, HOFFMANN K A W, LOW J E, et al. Aerial Grasping and the Velocity Sufficiency Region [J]. IEEE Robotics and Automation Letters, 2022, 7(4): 10009-10016. doi: 10.1109/LRA.2022.3192652
|
DAVIES M N, GREEN P R. Optic Flow-Field Variables Trigger Landing in Hawk But Not in Pigeons [J]. DIE NATURWISSENSCHAFTEN, 1990, 77(3): 142-144. doi: 10.1007/BF01134481
|
黄真, 赵永生, 赵铁石. 高等空间机构学[M]. 2版. 北京: 高等教育出版社, 2014.
|