MANEA F, HOUILLON F B, PASQUATO L, et al. Nanozymes: Gold-Nanoparticle-Based Transphosphorylation Catalysts[J]. Angewandte Chemie (International Ed in English), 2004, 43(45): 6165-6169. doi: 10.1002/anie.200460649
GAO L Z, ZHUANG J, NIE L, et al. Intrinsic Peroxidase-Like Activity of Ferromagnetic Nanoparticles[J]. Nature Nanotechnology, 2007, 2(9): 577-583. doi: 10.1038/nnano.2007.260
HSU J C, NIEVES L M, BETZER O, et al. Nanoparticle Contrast Agents for X-Ray Imaging Applications[J]. Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology, 2020, 12(6): e1642. doi: 10.1002/wnan.1642
HANŽIĆ N, JURKIN T, MAKSIMOVIĆ A, et al. The Synthesis of Gold Nanoparticles by a Citrate-Radiolytical Method[J]. Radiation Physics and Chemistry, 2015, 106: 77-82. doi: 10.1016/j.radphyschem.2014.07.006
LIU X, WORDEN J G, HUO Q, et al. Kinetic Study of Gold Nanoparticle Growth in Solution by Brust-Schiffrin Reaction[J]. Journal of Nanoscience and Nanotechnology, 2006, 6(4): 1054-1059. doi: 10.1166/jnn.2006.138
HU X N, SARAN A, HOU S, et al. Au@PtAg Core/Shell Nanorods: Tailoring Enzyme-Like Activities via Alloying[J]. RSC Advances, 2013, 3(17): 6095-6105. doi: 10.1039/c3ra23215h
ROGGENBUCK J, SCHÄFER H, TSONCHEVA T, et al. Mesoporous CeO2: Synthesis by Nanocasting, Characterisation and Catalytic Properties[J]. Microporous and Mesoporous Materials, 2007, 101(3): 335-341. doi: 10.1016/j.micromeso.2006.11.029
HUA C C, ZAKARIA S, FARAHIYAN R, et al. Size-Controlled Synthesis and Characterization of Fe3O4 Nanoparticles by Chemical Coprecipitation Method[J]. Sains Malaysiana, 2008, 37(4): 389-394.
CHANG M Y, WANG M, WANG M F, et al. A Multifunctional Cascade Bioreactor Based on Hollow-Structured Cu2MoS4 for Synergetic Cancer Chemo-Dynamic Therapy/Starvation Therapy/Phototherapy/Immunotherapy with Remarkably Enhanced Efficacy[J]. Advanced Materials, 2019, 31(51): 1905271. doi: 10.1002/adma.201905271
LIANG Q, XI J, GAO X J, et al. A Metal-Free Nanozyme-Activated Prodrug Strategy for Targeted Tumor Catalytic Therapy[J]. Nano Today, 2020, 35: 100935. doi: 10.1016/j.nantod.2020.100935
CHEN Q, LI X, MIN X M, et al. Determination of Catechol and Hydroquinone with High Sensitivity Using MOF-Graphene Composites Modified Electrode[J]. Journal of Electroanalytical Chemistry, 2017, 789: 114-122. doi: 10.1016/j.jelechem.2017.02.033
LI J N, LIU W Q, WU X C, et al. Mechanism of PH-Switchable Peroxidase and Catalase-Like Activities of Gold, Silver, Platinum and Palladium[J]. Biomaterials, 2015, 48: 37-44. doi: 10.1016/j.biomaterials.2015.01.012
COMOTTI M, DELLA P C, FALLETTA E, et al. A Erobicoxidation of Glucose with Gold Catalyst: Hydrogen Peroxide as Intermediate and Reagent[J]. Adv Synth Catal, 2006, 348(3), 313-316. doi: 10.1002/adsc.200505389
SHEN X M, LIU W Q, GAO X J, et al. Mechanisms of Oxidase and Superoxide Dismutation-Like Activities of Gold, Silver, Platinum and Palladium and Their Alloys: A General Way to the Activation of Molecular Oxygen[J]. Journal of the American Chemical Society, 2015, 137(50): 15882-15891. doi: 10.1021/jacs.5b10346
BEHLER J, DELLEY B, LORENZ S, et al. Dissociation of O2 at Al(111): The Role of Spin Selection Rules[J]. Phys Rev Lett, 2005, 94(3): 537-559.
RAGG R, NATALIO F, TAHIR M N, et al. Molybdenum Trioxide Nanoparticles with Intrinsic Sulfite Oxidase Activity[J]. ACS Nano, 2014, 8(5): 5182-5189. doi: 10.1021/nn501235j
ASATI A, SANTRA S, KAITTANIS C, et al. Oxidase-Like Activity of Polymer-Coated Cerium Oxide Nanoparticles[J]. Angew Chem, Int Ed, 2009, 48(13): 2308-2312. doi: 10.1002/anie.200805279
LIU J, MENG L J, FEI Z F, et al. MnO2 Nanosheets as an Artificial Enzyme to Mimic Oxidase for Rapid and Sensitive Detection of Glutathione[J]. Biosensors and Bioelectronics, 2017, 90: 69-74. doi: 10.1016/j.bios.2016.11.046
ZHANG X D, HE S H, CHEN Z H, et al. CoFe2O4 Nanoparticles as Oxidase Mimic-Mediated Chemiluminescence of Aqueous Luminol for Sulfite in White Wines[J]. Journal of Agricultural and Food Chemistry, 2013, 61(4): 840-847. doi: 10.1021/jf3041269
VERNEKAR A A, DAS T, GHOSH S, et al. A Remarkably Efficient MnFe2O4-Based Oxidase Nanozyme[J]. Chemistry-An Asian Journal, 2016, 11(1): 72-76. doi: 10.1002/asia.201500942
LIU J B, HU X N, HOU S, et al. Screening of Inhibitors for Oxidase Mimics of Au@Pt Nanorodsby Catalytic Oxidation of OPD[J]. Chem Commun, 2011, 47(39): 10981-10983. doi: 10.1039/c1cc14346h
SUN H J, ZHAO A D, GAO N, et al. Deciphering a Nanocarbon-Based Artificial Peroxidase: Chemical Identification of the Catalytically Active and Substrate-Binding Sites on Graphene Quantum Dots[J]. Angewandte Chemie (International Ed in English), 2015, 54(24): 7176-7180. doi: 10.1002/anie.201500626
ZHAO R S, ZHAO X, GAO X F. Molecular-Level Insights into Intrinsic Peroxidase-Like Activity of Nanocarbon Oxides[J]. Chemistry, 2015, 21(3): 960-964. doi: 10.1002/chem.201404647
CLELAND W W. Derivation of Rate Equations for Multisite Ping-Pong Mechanisms with Ping-Pong Reactions at One or More Sites[J]. The Journal of Biological Chemistry, 1973, 248(24): 8353-8355. doi: 10.1016/S0021-9258(19)43139-6
PIRMOHAMED T, DOWDING J M, SINGH S, et al. Nanoceria Exhibit Redox State-Dependent Catalase Mimetic Activity[J]. Chemical Communications, 2010, 46(16): 2736-2738. doi: 10.1039/b922024k
WANG N, ZHU L H, WANG D L, et al. Sono-Assisted Preparation of Highly-Efficient Peroxidase-Like Fe3O4 Magnetic Nanoparticles for Catalytic Removal of Organic Pollutants with H2O2[J]. Ultrasonics Sonochemistry, 2010, 17(3): 526-533. doi: 10.1016/j.ultsonch.2009.11.001
MU J S, ZHANG L, ZHAO M, et al. Catalase Mimic Property of Co3O4 Nanomaterials with Different Morphology and Its Application as a Calcium Sensor[J]. ACS Applied Materials and Interfaces, 2014, 6(10): 7090-7098. doi: 10.1021/am406033q
HUANG Y Y, LIU C Q, PU F, et al. A GO-Se Nanocomposite as an Antioxidant Nanozyme for Cytoprotection[J]. Chemical Communications, 2017, 53(21): 3082-3085. doi: 10.1039/C7CC00045F
COLON J, HSIEH N, FERGUSON A, et al. Cerium Oxide Nanoparticles Protect Gastrointestinal Epithelium from Radiation-Induced Damage by Reduction of Reactive Oxygen Species and Upregulation of Superoxide Dismutase 2[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2010, 6(5): 698-705. doi: 10.1016/j.nano.2010.01.010
KORSCHELT K, SCHWIDETZKY R, PFITZNER F, et al. CeO2-x Nanorods with Intrinsic Urease-Like Activity[J]. Nanoscale, 2018, 10(27): 13074-13082. doi: 10.1039/C8NR03556C
CELARDO I, PEDERSEN J Z, TRAVERSA E, et al. Pharmacological Potential of Cerium Oxide Nanoparticles[J]. Nanoscale, 2011, 3(4): 1411-1420. doi: 10.1039/c0nr00875c
SONG Y, QU K, XU C, et al. Visual and Quantitative Detection of Copper Ions Using Magnetic Silica Nanoparticles Clicked on Multiwalled Carbon Nanotubes[J]. Chemical Communications, 2010, 46(35): 6572-6574. doi: 10.1039/c0cc01593h
CHANG Y, ZHANG Z, HAO J, et al. BSA-Stabilized Au Clusters as Peroxidase Mimetic for Colorimetric Detection of Ag+[J]. Sens Actuators, 2016, 232: 692-697. doi: 10.1016/j.snb.2016.04.039
LIEN C W, UNNIKRISHNAN B, HARROUN S G, et al. Visual Detection of Cyanide Ions by Membrane-Based Nanozyme Assay[J]. Biosens Bioelectron, 2018, 102: 510-517. doi: 10.1016/j.bios.2017.11.063
KARIM M N, ANDERSON S R, SINGH S, et al. Nanostructured Silver Fabric as a Free-Standing Nano Zyme for Colorimetric Detection of Glucose in Urine[J]. Biosensors and Bioelectronics, 2018, 110: 8-15. doi: 10.1016/j.bios.2018.03.025
DENG H H, HONG G L, LIN F L, et al. Colorimetric Detection of Urea, Urease and Urease Inhibitor Based on the Peroxidase-Like Activity of Gold Nanoparticles[J]. Anal Chim Acta, 2016, 915: 74-80. doi: 10.1016/j.aca.2016.02.008
LIU H, ZHU J Y, FU S Y. Effects of Lignin-Metal Complexation on Enzymatic Hydrolysis of Cellulose[J]. J Agric Food Chem, 2010, 12(58): 7233-7238.
CHEN W, ZHANG X, LI J, et al. Colorimetric Detection of Nucleic Acids Through Triplex-Hybridization Chain Reaction and DNA Controlled Growth of Platinum Nanoparticles on Graphene Oxide[J]. Anal Chem, 2020, 92(3): 2714-2721. doi: 10.1021/acs.analchem.9b04909
HE W W, LIU Y, YUAN J S, et al. Au@Pt Nanostructures as Oxidase and Peroxidase Mimetics for Use in Immunoassays[J]. Biomaterials, 2011, 32(4): 1139-1147. doi: 10.1016/j.biomaterials.2010.09.040
DEMIN D, FANG K. Nanozyme-Strip for Rapid Local Diagnosis of Ebola[J]. Biosens Bioelectron, 2015, 74: 134-141. doi: 10.1016/j.bios.2015.05.025
BING J, LIANG L. Biomineralization Synthesis of the Cobalt Nanozyme in SP94-Ferritin Nanocages for Prognostic Diagnosis of Hepatocellular Carcinoma[J]. ACS Appl Mater Interfaces, 2019, 10 (11): 9747-9755.
LIU T, XIAO B, XIANG F, et al. Ultrasmall Copper-Based Nanoparticles for Reactive Oxygen Species Scavenging and Alleviation of Inflammation Related Diseases[J]. Nat Commun, 2020, 11(1): 2788. doi: 10.1038/s41467-020-16544-7
MA M, LIU Z, GAO N, et al. Self-Protecting Biomimetic Nanozyme for Selective and Synergistic Clearance of Peripheral Amyloid-B in an Alzheimer's Disease Model[J]. J Am Chem Soc, 2020, 142(52): 21702-21711. doi: 10.1021/jacs.0c08395
MA X Y, REN X L, GUO X D, et al. Multifunctional Iron-Based Metal-Organic Framework as Biodegradable Nanozyme for Microwave Enhancing Dynamic Therapy[J]. Biomaterials, 2019, 214: 119223. doi: 10.1016/j.biomaterials.2019.119223
XU J, SHI R, CHEN G, et al. All-In-One Theranostic Nanomedicine with Ultrabright Second Near-Infrared Emission for Tumor-Modulated Bioimaging and Chemodynamic/Photodynamic Therapy[J]. ACS Nano, 2020, 14(8): 9613-9625. doi: 10.1021/acsnano.0c00082
HUANG Y, WU S, ZHANG L, et al. A Metabolic Multistage Glutathione Depletion Used for Tumor-Specific Chemodynamic Therapy[J]. ACS Nano, 2022, 16(3): 4228-4238. doi: 10.1021/acsnano.1c10231