THRIFT A P, WENKER T N, EL-SERAG H B. Global Burden of Gastric Cancer: Epidemiological Trends, Risk Factors, Screening and Prevention[J]. Nature Reviews Clinical Oncology, 2023, 20(5): 338-349. doi: 10.1038/s41571-023-00747-0
|
许永虎, 徐大志. 21世纪以来胃癌治疗进展及未来展望[J]. 中国癌症杂志, 2024, 34(3): 239-249.
|
SMYTH E C, NILSSON M, GRABSCH H I, et al. Gastric Cancer[J]. Lancet, 2020, 396(10251): 635-648. doi: 10.1016/S0140-6736(20)31288-5
|
MORGAN E, ARNOLD M, CAMARGO M C, et al. The Current and Future Incidence and Mortality of Gastric Cancer in 185 Countries: A Population-Based Modelling Study[J]. E-Clinical Medicine, 2022, 47: 101404.
|
FARZIN L, SHAMSIPUR M. Recent Advances in Design of Electrochemical Affinity Biosensors for Low Level Detection of Cancer Protein Biomarkers Using Nanomaterial-Assisted Signal Enhancement Strategies[J]. Journal of Pharmaceutical and Biomedical Analysis, 2018, 147: 185-210. doi: 10.1016/j.jpba.2017.07.042
|
MANSOUR-GHANAEI F, JOUKAR F, BAGHAEE M, et al. Only Serum Pepsinogen I and Pepsinogen Ⅰ/Ⅱ Ratio are Specific and Sensitive Biomarkers for Screening of Gastric Cancer[J]. Biomolecular Concepts, 2019, 10(1): 82-90. doi: 10.1515/bmc-2019-0010
|
CHEN X G. Analysis of Methamphetamine in Human Urine Using Ionic Liquid Dispersive Liquid-Phase Microextraction Combined with HPLC[J]. Chromatographia, 2015, 78(7): 515-520.
|
付梅, 申春琴, 汪政希, 等. 超高液相色谱-串联质谱法测定贝类组织中环境雄激素睾酮的前处理方法优化[J]. 西南大学学报(自然科学版), 2023, 45(6): 116-124.
|
KONISHI N, MATSUMOTO K, HIASA Y, et al. Tissue and Serum Pepsinogen Ⅰ and Ⅱ in Gastric Cancer Identified Using Immunohistochemistry and Rapid ELISA[J]. Journal of Clinical Pathology, 1995, 48(4): 364-367. doi: 10.1136/jcp.48.4.364
|
GJERDE H, HASVOLD I, PETTERSEN G, et al. Determination of Amphetamine and Methamphetamine in Blood by Derivatization with Perfluorooctanoyl Chloride and Gas Chromatography/Mass Spectrometry[J]. Journal of Analytical Toxicology, 1993, 17(2): 65-68. doi: 10.1093/jat/17.2.65
|
GUO J C, CHEN S Q, TIAN S L, et al. 5G-Enabled Ultra-Sensitive Fluorescence Sensor for Proactive Prognosis of COVID-19[J]. Biosensors and Bioelectronics, 2021, 181: 113160. doi: 10.1016/j.bios.2021.113160
|
GUO J C, CHEN S Q, GUO J H, et al. Nanomaterial Labels in Lateral Flow Immunoassays for Point-of-Care-Testing[J]. Journal of Materials Science and Technology, 2021, 60: 90-104. doi: 10.1016/j.jmst.2020.06.003
|
CHENG J, YANG G P, GUO J C, et al. Integrated Electrochemical Lateral Flow Immunoassays (eLFIAs): Recent Advances[J]. The Analyst, 2022, 147(4): 554-570. doi: 10.1039/D1AN01478A
|
SURYOPRABOWO S, LIU L Q, KUANG H, et al. Fluorescence Based Immunochromatographic Sensor for Rapid and Sensitive Detection of Tadalafil and Comparison with a Gold Lateral Flow Immunoassay[J]. Food Chemistry, 2021, 342: 128255. doi: 10.1016/j.foodchem.2020.128255
|
WANG C W, CHENG X D, LIU L Y, et al. Ultrasensitive and Simultaneous Detection of Two Specific SARS-CoV-2 Antigens in Human Specimens Using Direct/Enrichment Dual-Mode Fluorescence Lateral Flow Immunoassay[J]. ACS Applied Materials and Interfaces, 2021, 13(34): 40342-40353. doi: 10.1021/acsami.1c11461
|
WU Z Z, HE D Y, XU E B, et al. Rapid Detection of Β-Conglutin with a Novel Lateral Flow Aptasensor Assisted by Immunomagnetic Enrichment and Enzyme Signal Amplification[J]. Food Chemistry, 2018, 269: 375-379. doi: 10.1016/j.foodchem.2018.07.011
|
HU J, JIANG Y Z, TANG M, et al. Colorimetric-Fluorescent-Magnetic Nanosphere-Based Multimodal Assay Platform for Salmonella Detection[J]. Analytical Chemistry, 2019, 91(1): 1178-1184. doi: 10.1021/acs.analchem.8b05154
|
YANG S S, DU J Y, WEI M L, et al. Colorimetric-Photothermal-Magnetic Three-in-One Lateral Flow Immunoassay for Two Formats of Biogenic Amines Sensitive and Reliable Quantification[J]. Analytica Chimica Acta, 2023, 1239: 340660. doi: 10.1016/j.aca.2022.340660
|
YANG H Y, HE Q Y, LIN M X, et al. Multifunctional Au@Pt@Ag NPs with Color-Photothermal-Raman Properties for Multimodal Lateral Flow Immunoassay[J]. Journal of Hazardous Materials, 2022, 435: 129082. doi: 10.1016/j.jhazmat.2022.129082
|
LIANG J J, WU L, WANG Y Q, et al. SERS/Photothermal-Based Dual-Modal Lateral Flow Immunoassays for Sensitive and Simultaneous Antigen Detection of Respiratory Viral Infections[J]. Sensors and Actuators B: Chemical, 2023, 389: 133875. doi: 10.1016/j.snb.2023.133875
|
YANG G P, CHENG K X, CHU Z K, et al. A Miniaturized Giant Magnetic Resistance System for Quantitative Detection of Methamphetamine[J]. Analyst, 2021, 146(8): 2718-2725. doi: 10.1039/D0AN02418J
|
CHU Z K, FU M M, GUO J C, et al. Magnetic Resistance Sensory System for the Quantitative Measurement of Morphine[J]. IEEE Transactions on Biomedical Circuits and Systems, 2021, 15(1): 171-176. doi: 10.1109/TBCAS.2021.3060181
|
QUESADA-GONZÁLEZ D, MERKOÇI A. Nanoparticle-Based Lateral Flow Biosensors[J]. Biosensors and Bioelectronics, 2015, 73: 47-63. doi: 10.1016/j.bios.2015.05.050
|
LI Z Q, ZHANG W, ZHANG Q, et al. Self-Assembly Multivalent Fluorescence-Nanobody Coupled Multifunctional Nanomaterial with Colorimetric Fluorescence and Photothermal to Enhance Immunochromatographic Assay[J]. ACS Nano, 2023, 17(19): 19359-19371. doi: 10.1021/acsnano.3c06930
|
WANG Z X, ZOU R B, YI J H, et al. "Four-in-one" Multifunctional Dandelion-Like Gold@platinum Nanoparticles-Driven Multimodal Lateral Flow Immunoassay[J]. Small, 2024: 2310869. doi: 10.1002/smll.202310869
|
RAY P C, KHAN S A, SINGH A K, et al. Nanomaterials for Targeted Detection and Photothermal Killing of Bacteria[J]. Chemical Society Reviews, 2012, 41(8): 3193-3209. doi: 10.1039/c2cs15340h
|
WANG Z T, WANG M L, WANG X X, et al. Photothermal-Based Nanomaterials and Photothermal-Sensing: An Overview[J]. Biosensors and Bioelectronics, 2023, 220: 114883. doi: 10.1016/j.bios.2022.114883
|
FU X L, CHENG Z Y, YU J M, et al. A SERS-Based Lateral Flow Assay Biosensor for Highly Sensitive Detection of HIV-1 DNA[J]. Biosensors and Bioelectronics, 2016, 78: 530-537. doi: 10.1016/j.bios.2015.11.099
|
LIU H F, DAI E H, XIAO R, et al. Development of a SERS-Based Lateral Flow Immunoassay for Rapid and Ultra-Sensitive Detection of Anti-SARS-CoV-2 IgM/IgG in Clinical Samples[J]. Sensors and Actuators B: Chemical, 2021, 329: 129196. doi: 10.1016/j.snb.2020.129196
|
LIU X Y, WANG K, CAO B, et al. Multifunctional Nano-Sunflowers with Color-Magnetic-Raman Properties for Multimodal Lateral Flow Immunoassay[J]. Analytical Chemistry, 2021, 93(7): 3626-3634. doi: 10.1021/acs.analchem.0c05354
|
LIANG M J, CAI X F, GAO Y Y, et al. A Versatile Nanozyme Integrated Colorimetric and Photothermal Lateral Flow Immunoassay for Highly Sensitive and Reliable Aspergillus Flavus Detection[J]. Biosensors and Bioelectronics, 2022, 213: 114435. doi: 10.1016/j.bios.2022.114435
|
HUANG Z, PENG J, HAN J J, et al. A Novel Method Based on Fluorescent Magnetic Nanobeads for Rapid Detection of Escherichia Coli O157: H7[J]. Food Chemistry, 2019, 276: 333-341. doi: 10.1016/j.foodchem.2018.09.164
|
LIU J, SUN Z K, DENG Y H, et al. Highly Water-Dispersible Biocompatible Magnetite Particles with Low Cytotoxicity Stabilized by Citrate Groups[J]. Angewandte Chemie (International Ed in English), 2009, 48(32): 5875-5879. doi: 10.1002/anie.200901566
|
ZHANG C Y, WANG C W, XIAO R, et al. Sensitive and Specific Detection of Clinical Bacteria via Vancomycin-Modified Fe3O4@Au Nanoparticles and Aptamer-Functionalized SERS Tags[J]. Journal of Materials Chemistry B, 2018, 6(22): 3751-3761. doi: 10.1039/C8TB00504D
|
FANG Y X, GUO S J, ZHU C Z, et al. Self-Assembly of Cationic Polyelectrolyte-Functionalized Graphene Nanosheets and Gold Nanoparticles: A Two-Dimensional Heterostructure for Hydrogen Peroxide Sensing[J]. Langmuir, 2010, 26(13): 11277-11282. doi: 10.1021/la100575g
|
ZHANG L, NIU Y, LV Y J, et al. Preliminary Study on Reference Interval of Serum Pepsinogen in Healthy Subjects[J]. Patient Preference and Adherence, 2021, 15: 2725-2730. doi: 10.2147/PPA.S330656
|
LI K J, LI X Q, FAN Y L, et al. Simultaneous Detection of Gastric Cancer Screening Biomarkers Plasma Pepsinogen Ⅰ/Ⅱ Using Fluorescent Immunochromatographic Strip Coupled with a Miniature Analytical Device[J]. Sensors and Actuators B: Chemical, 2019, 286: 272-281. doi: 10.1016/j.snb.2019.01.149
|
WU F, MAO M, CEN Y, et al. Copolymerization of Eu(TTA)3Phen Doped Styrene and Methyl Methacrylate Nanoparticles and Use in Quantitative Detection of Pepsinogen[J]. RSC Advances, 2017, 7(20): 12217-12223. doi: 10.1039/C6RA27071A
|
HUANG B, XIAO H L, ZHANG X R, et al. Ultrasensitive Detection of Pepsinogen Ⅰ and Pepsinogen Ⅱ by a Time-Resolved Fluoroimmunoassay and Its Preliminary Clinical Applications[J]. Analytica Chimica Acta, 2006, 571(1): 74-78. doi: 10.1016/j.aca.2006.04.053
|