CHATTOPADHYAY T, MALLICK B. FDFT1 Repression by PiR-39980 Prevents Oncogenesis by Regulating Proliferation and Apoptosis through Hypoxia in Tongue Squamous Cell Carcinoma[J]. Life Sciences, 2023, 329: 121954. doi: 10.1016/j.lfs.2023.121954
GODET I, SHIN Y J, JU J A, et al. Fate-Mapping Post-Hypoxic Tumor Cells Reveals a ROS-Resistant Phenotype that Promotes Metastasis[J]. Nature Communications, 2019, 10(1): 4862. doi: 10.1038/s41467-019-12412-1
YANG G L, TIAN J, CHEN C, et al. An Oxygen Self-Sufficient NIR-Responsive Nanosystem for Enhanced PDT and Chemotherapy Against Hypoxic Tumors[J]. Chemical Science, 2019, 10(22): 5766-5772. doi: 10.1039/C9SC00985J
马雪莹, 李明. Ce掺杂Ni2P纳米片的电子调控促进高效析氧[J]. 西南大学学报(自然科学版), 2024, 46(1): 188-195.
陆娟, 殷琪峰, 胡珊珊, 等. Cu2-xSe@MIL-100(Fe)-DOX的合成及多模式抗肿瘤研究[J]. 西南大学学报(自然科学版), 2022, 44(1): 108-117.
ABBAS M, ZOU Q L, LI S K, et al. Self-Assembled Peptide- and Protein-Based Nanomaterials for Antitumor Photodynamic and Photothermal Therapy[J]. Advanced Materials, 2017, 29(12): 1605021. doi: 10.1002/adma.201605021
ZOU Q L, ABBAS M, ZHAO L Y, et al. Biological Photothermal Nanodots Based on Self-Assembly of Peptide-Porphyrin Conjugates for Antitumor Therapy[J]. Journal of the American Chemical Society, 2017, 139(5): 1921-1927. doi: 10.1021/jacs.6b11382
LI A N, WANG S Q, ZHANG Z Q, et al. Poly-l-Lysine Derivative-Coated Black Phosphorus as a Nanoplatform for Photothermal Chemotherapy to Enhance Anti-Tumor Efficiency[J]. Journal of Materials Chemistry B, 2022, 10(27): 5191-5202. doi: 10.1039/D1TB02456F
SONG K, CHEN G B, HE Z Y, et al. Protoporphyrin-Sensitized Degradable Bismuth Nanoformulations for Enhanced Sonodynamic Oncotherapy[J]. Acta Biomaterialia, 2023, 158: 637-648. doi: 10.1016/j.actbio.2022.12.065
WANG D W, ZHANG Z, LIN L, et al. Porphyrin-Based Covalent Organic Framework Nanoparticles for Photoacoustic Imaging-Guided Photodynamic and Photothermal Combination Cancer Therapy[J]. Biomaterials, 2019, 223: 119459. doi: 10.1016/j.biomaterials.2019.119459
WANG Y R, WU M, WANG X R, et al. Biodegradable MnO2-Based Gene-Engineered Nanocomposites for Chemodynamic Therapy and Enhanced Antitumor Immunity[J]. Materials Today Bio, 2022, 18: 100531.
QIN Z Z, QIU M J, ZHANG Q Y, et al. Development of Copper Vacancy Defects in a Silver-Doped CuS Nanoplatform for High-Efficiency Photothermal-Chemodynamic Synergistic Antitumor Therapy[J]. Journal of Materials Chemistry B, 2021, 9(42): 8882-8896. doi: 10.1039/D1TB01629F
NIE X, XIA L, WANG H L, et al. Photothermal Therapy Nanomaterials Boosting Transformation of Fe(Ⅲ) into Fe(Ⅱ) in Tumor Cells for Highly Improving Chemodynamic Therapy[J]. ACS Applied Materials & Interfaces, 2019, 11(35): 31735-31742.
GUO C J, SU Y G, CHENG Z T, et al. Novel ROS-Responsive Marine Biomaterial Fucoidan Nanocarriers with AIE Effect and Chemodynamic Therapy[J]. International Journal of Biological Macromolecules, 2022, 202: 112-121. doi: 10.1016/j.ijbiomac.2022.01.060
SUN L Y, GAO W D, LIU J, et al. O2-Supplying Nanozymes Alleviate Hypoxia and Deplete Lactate to Eliminate Tumors and Activate Antitumor Immunity[J]. ACS Applied Materials & Interfaces, 2022, 14(51): 56644-56657.
LIU Q Q, TIAN J W, LIU J J, et al. Modular Assembly of Tumor-Penetrating and Oligomeric Nanozyme Based on Intrinsically Self-Assembling Protein Nanocages[J]. Advanced Materials, 2021, 33(39): e2103128. doi: 10.1002/adma.202103128
VERONIAINA H, WU Z H, QI X L. Innate Tumor-Targeted Nanozyme Overcoming Tumor Hypoxia for Cancer Theranostic Use[J]. Journal of Advanced Research, 2021, 33: 201-213. doi: 10.1016/j.jare.2021.02.004
WU B Y, FU J T, ZHOU Y X, et al. Tailored Core-Shell Dual Metal-Organic Frameworks as a Versatile Nanomotor for Effective Synergistic Antitumor Therapy[J]. Acta Pharmaceutica Sinica B, 2020, 10(11): 2198-2211. doi: 10.1016/j.apsb.2020.07.025
JIANG F, DING B B, LIANG S, et al. Intelligent MoS2-CuO Heterostructures with Multiplexed Imaging and Remarkably Enhanced Antitumor Efficacy via Synergetic Photothermal Therapy/Chemodynamic Therapy/Immunotherapy[J]. Biomaterials, 2021, 268: 120545. doi: 10.1016/j.biomaterials.2020.120545
MO Z M, LI Q T, ZHAO K, et al. A Nanoarchitectonic Approach Enables Triple Modal Synergistic Therapies to Enhance Antitumor Effects[J]. ACS Applied Materials & Interfaces, 2022, 14(8): 10001-10014.
HE Y, WAN J Y, YANG Y, et al. Multifunctional Polypyrrole-Coated Mesoporous TiO2 Nanocomposites for Photothermal, Sonodynamic, and Chemotherapeutic Treatments and Dual-Modal Ultrasound/Photoacoustic Imaging of Tumors[J]. Advanced Healthcare Materials, 2019, 8(9): 1801254. doi: 10.1002/adhm.201801254
SU J J, LU S, WEI Z, et al. Biocompatible Inorganic Nanoagent for Efficient Synergistic Tumor Treatment with Augmented Antitumor Immunity[J]. Small, 2022, 18(16): e2200897. doi: 10.1002/smll.202200897
ZHEN W Y, LIU Y, LIN L, et al. BSA-IrO2: Catalase-Like Nanoparticles with High Photothermal Conversion Efficiency and a High X-Ray Absorption Coefficient for Anti-Inflammation and Antitumor Theranostics[J]. Angewandte Chemie (International Ed in English), 2018, 57(32): 10309-10313. doi: 10.1002/anie.201804466
GAO J J, HUANG X, CAI W Z, et al. Rational Design of an Iridium-Tungsten Composite with an Iridium-Rich Surface for Acidic Water Oxidation[J]. ACS Applied Materials & Interfaces, 2020, 12(23): 25991-26001.