高文强, 王小菲, 江泽平, 等. 气候变化下栓皮栎潜在地理分布格局及其主导气候因子[J]. 生态学报, 2016, 36(14): 4475-4484.
MASSON-DELMOTTE V, ZHAI P, PÖRTNER H O, et al. Global Warming of 1.5 C: IPCC Special Report on Impacts of Global Warming of 1.5 C above Pre-industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty[M]. Cambridge: Cambridge University Press, 2022.
ZHANG W X, FURTADO K, WU P L, et al. Increasing Precipitation Variability on Daily-to-Multiyear Time Scales in a Warmer World[J]. Science Advances, 2021, 7(31): eabf8021. doi: 10.1126/sciadv.abf8021
TILMAN D, LEHMAN C L, THOMSON K T. Plant Diversity and Ecosystem Productivity: Theoretical Considerations[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(5): 1857-1861.
HECTOR A, HAUTIER Y, SANER P, et al. General Stabilizing Effects of Plant Diversity on Grassland Productivity through Population Asynchrony and Overyielding[J]. Ecology, 2010, 91(8): 2213-2220. doi: 10.1890/09-1162.1
VEČEŘA M, DIVÍŠEK J, LENOIR J, et al. Alpha Diversity of Vascular Plants in European Forests[J]. Journal of Biogeography, 2019, 46(9): 1919-1935. doi: 10.1111/jbi.13624
LUO W X, ZHANG C Y, ZHAO X H, et al. Understanding Patterns and Potential Drivers of Forest Diversity in Northeastern China Using Machine-Learning Algorithms[J]. Journal of Vegetation Science, 2021, 32(2): e13022. doi: 10.1111/jvs.13022
LIU J M, XU Y Y, SUN C W, et al. Distinct Ecological Habits and Habitat Responses to Future Climate Change in Three East and Southeast Asian Sapindus Species[J]. Forest Ecology and Management, 2022, 507: 119982. doi: 10.1016/j.foreco.2021.119982
CORLETT R T, WESTCOTT D A. Will Plant Movements Keep up with Climate Change?[J]. Trends in Ecology & Evolution, 2013, 28(8): 482-488.
唐兴港, 袁颖丹, 张金池. 气候变化对杉木适生区和生态位的影响[J]. 植物研究, 2022, 42(1): 151-160.
MARTIN Y, VAN DYCK H, DENDONCKER N, et al. Testing Instead of Assuming the Importance of Land Use Change Scenarios to Model Species Distributions under Climate Change[J]. Global Ecology and Biogeography, 2013, 22(11): 1204-1216. doi: 10.1111/geb.12087
ELITH J, LEATHWICK J R. Species Distribution Models: Ecological Explanation and Prediction across Space and Time[J]. Annual Review of Ecology, Evolution, and Systematics, 2009, 40: 677-697. doi: 10.1146/annurev.ecolsys.110308.120159
LEE-YAW J A, KHAROUBA H M, BONTRAGER M, et al. A Synthesis of Transplant Experiments and Ecological Niche Models Suggests that Range Limits are often Niche Limits[J]. Ecology Letters, 2016, 19(6): 710-722. doi: 10.1111/ele.12604
ALVARADO-SERRANO D F, KNOWLES L L. Ecological Niche Models in Phylogeographic Studies: Applications, Advances and Precautions[J]. Molecular Ecology Resources, 2014, 14(2): 233-248. doi: 10.1111/1755-0998.12184
HASSANVAND A. Potential Distribution of Persian Gazelle (Gazella subgutturosa subgutturosa) in Bamoo National Park, Shiraz, Iran: a presence-Only Model Approach[J]. Applied Ecology and Environmental Research, 2018, 16(1): 305-319. doi: 10.15666/aeer/1601_305319
乔慧捷, 胡军华, 黄继红. 生态位模型的理论基础、发展方向与挑战[J]. 中国科学: 生命科学, 2013, 43(11): 915-927.
FLESSNER B, HENRY M C, GREEN J. Species Distribution Modeling of American Beech (Fagus grandifolia) Distribution in Southwest Ohio[J]. International Journal of Applied Geospatial Research, 2017, 8(3): 16-36. doi: 10.4018/ijagr.2017070102
MANEL S, WILLIAMS H C, ORMEROD S J. Evaluating Presence-Absence Models in Ecology: The Need to Account for Prevalence[J]. Journal of Applied Ecology, 2001, 38(5): 921-931. doi: 10.1046/j.1365-2664.2001.00647.x
PHILLIPS S J, ANDERSON R P, SCHAPIRE R E. Maximum Entropy Modeling of Species Geographic Distributions[J]. Ecological Modelling, 2006, 190(3-4): 231-259. doi: 10.1016/j.ecolmodel.2005.03.026
WAN J Z, WANG C J, YU F H. Effects of Occurrence Record Number, Environmental Variable Number, and Spatial Scales on MaxEnt Distribution Modelling for Invasive Plants[J]. Biologia, 2019, 74(7): 757-766. doi: 10.2478/s11756-019-00215-0
王艳君, 高泰, 石娟. 基于MaxEnt模型对舞毒蛾全球适生区的预测及分析[J]. 北京林业大学学报, 2021, 43(9): 59-69.
王燚, 包志毅. 我国柃属植物种质资源及其园林应用前景[J]. 林业科学, 2007, 43(8): 118-122.
马进, 王小德. 柃木属6种树种植物光能利用特性及耐荫性研究[J]. 西北林学院学报, 2007, 22(4): 13-15.
王茜, 杨思琴, 秦菲, 等. 柃木属一新变型——粉花细齿叶柃[J]. 西北植物学报, 2019, 39(11): 2091-2092.
申国柱, 王跃华. 我国柃属植物的分布与开发利用[J]. 北方园艺, 2007(8): 135-136.
高大海, 陈斌, 贺位忠, 等. 舟山海岛柃木的分布和生境群落学初步研究[J]. 浙江林业科技, 2013, 33(6): 32-36.
陈斌. 柃木的生态高效栽培技术[J]. 浙江林业, 2021(12): 30.
徐孝方, 梁训义, 许叶君, 等. 柃木的组织培养与快速繁殖技术[J]. 浙江农业学报, 2010, 22(2): 202-206.
BROWN J L. SDMtoolbox: A Python-Based GIS Toolkit for Landscape Genetic, Biogeographic and Species Distribution Model Analyses[J]. Methods in Ecology and Evolution, 2014, 5(7): 694-700. doi: 10.1111/2041-210X.12200
GUO Q, LIU X W, TANG H Y, et al. Prediction and Correction of in Situ Summer Precipitation in Southwest China Based on a Downscaling Method with the BCC_CSM[J]. Theoretical and Applied Climatology, 2021, 145(3): 1145-1159.
张丽霞, 陈晓龙, 辛晓歌. CMIP6情景模式比较计划(ScenarioMIP)概况与评述[J]. 气候变化研究进展, 2019, 15(5): 519-525.
SANG Y H, REN H L, SHI X L, et al. Improvement of Soil Moisture Simulation in Eurasia by the Beijing Climate Center Climate System Model from CMIP5 to CMIP6[J]. Advances in Atmospheric Sciences, 2021, 38(2): 237-252. doi: 10.1007/s00376-020-0167-7
ZHAO Y X, XIAO D P, BAI H Z, et al. Future Projection for Climate Suitability of Summer Maize in the North China Plain[J]. Agriculture, 2022, 12(3): 348. doi: 10.3390/agriculture12030348
SANCZUK P, DE LOMBAERDE E, HAESEN S, et al. Species Distribution Models and a 60-Year-Old Transplant Experiment Reveal Inhibited Forest Plant Range Shifts under Climate Change[J]. Journal of Biogeography, 2022, 49(3): 537-550. doi: 10.1111/jbi.14325
周炳江, 王玉洁, 马长乐, 等. 基于MaxEnt与ArcGIS的云南榧树潜在生境分析[J]. 生态学报, 2022, 42(11): 4485-4493.
叶兴状, 张明珠, 赖文峰, 等. 基于MaxEnt优化模型的闽楠潜在适宜分布预测[J]. 生态学报, 2021, 41(20): 8135-8144.
MUSCARELLA R, GALANTE P J, SOLEY-GUARDIA M, et al. ENMeval: An R Package for Conducting Spatially Independent Evaluations and Estimating Optimal Model Complexity for Maxent Ecological Niche Models[J]. Methods in Ecology and Evolution, 2014, 5(11): 1198-1205.
XIAO J, EZIZ A, ZHANG H, et al. Responses of Four Dominant Dryland Plant Species to Climate Change in the Junggar Basin, Northwest China[J]. Ecology and Evolution, 2019, 9(23): 13596-13607.
张春华, 雷晨雨, 王储, 等. 珍贵用材树种红椿4个变种栽培的潜在气候适生区预测[J]. 云南农业大学学报(自然科学), 2022, 37(2): 294-301.
张殷波, 刘彦岚, 秦浩, 等. 气候变化条件下山西翅果油树适宜分布区的空间迁移预测[J]. 应用生态学报, 2019, 30(2): 496-502.
LI M, LI C, JIANG Z H, et al. Deciphering China's Complex Pattern of Summer Precipitation Trends[J]. Earth's Future, 2022, 10(9): e2022EF002797.
曾冠文, 付晓萍, 牛志刚, 等. 6种岭南乡土灌木耐阴性比较研究[J]. 安徽农业科学, 2014, 42(34): 12142-12143, 12194.
裘宝林, 钟国荣. 浙江柃木属Eurya thunb. 植物的研究[J]. 浙江林学院学报, 1987, 4(1): 17-23.
WHITEHEAD D, GRIFFIN K L, TURNBULL M H, et al. Response of Total Night-Time Respiration to Differences in Total Daily Photosynthesis for Leaves in a Quercus rubra L. Canopy: Implications for Modelling Canopy CO2 Exchange[J]. Global Change Biology, 2004, 10(6): 925-938.
ZHANG X L, MANZANEDO R D, LV P C, et al. Reduced Diurnal Temperature Range Mitigates Drought Impacts on Larch Tree Growth in North China[J]. Science of the Total Environment, 2022, 848: 157808.
高大海, 陈斌, 贺位忠. 柃木等5种地被植物的抗旱性研究[J]. 浙江林业科技, 2013, 33(1): 49-51.
TANG F H, QUAN W X, LI C C, et al. Effects of Small Gaps on the Relationship among Soil Properties, Topography, and Plant Species in Subtropical Rhododendron Secondary Forest, Southwest China[J]. International Journal of Environmental Research and Public Health, 2019, 16(11): 1919.
XIE T, CUI B S, LI S Z, et al. Topography Regulates Edaphic Suitability for Seedling Establishment Associated with Tidal Elevation in Coastal Salt Marshes[J]. Geoderma, 2019, 337: 1258-1266.
NORDIN A, SCHMIDT I K, SHAVER G R. Nitrogen Uptake by Arctic Soil Microbes and Plants in Relation to Soil Nitrogen Supply[J]. Ecology, 2004, 85(4): 955-962.
JAMES J J, TILLER R L, RICHARDS J H. Multiple Resources Limit Plant Growth and Function in a Saline-Alkaline Desert Community[J]. Journal of Ecology, 2005, 93(1): 113-126.
CHENG J S, LAI Y Q, TIAN Y S, et al. Impact of Multiple Soil Nutrients on Distribution Patterns of Shrubs in an Arid Valley, in Southwest China[J]. Pakistan Journal of Botany, 2014, 46(5): 1621-1629.
DINGAAN M N V, TSUBO M, WALKER S, et al. Soil Chemical Properties and Plant Species Diversity along a Rainfall Gradient in Semi-Arid Grassland of South Africa[J]. Plant Ecology and Evolution, 2017, 150(1): 35-44.
SAKAI A, MALLA S B. Winter Hardiness of Tree Species at High Altitudes in the East Himalaya, Nepal[J]. Ecology, 1981, 62(5): 1288-1298.
YOU Q L, CAI Z Y, WU F Y, et al. Temperature Dataset of CMIP6 Models over China: Evaluation, Trend and Uncertainty[J]. Climate Dynamics, 2021, 57(1): 17-35.
李世友, 马爱丽, 王少名, 等. 14种常绿木本植物活枝叶在防火期的易燃性比较[J]. 生态学杂志, 2009, 28(4): 601-606.
WANG Y J, ZHOU B T, QIN D H, et al. Changes in Mean and Extreme Temperature and Precipitation over the Arid Region of NorthWestern China: Observation and Projection[J]. Advances in Atmospheric Sciences, 2017, 34(3): 289-305.
杨济达, 张志明, 沈泽昊, 等. 云南干热河谷植被与环境研究进展[J]. 生物多样性, 2016, 24(4): 462-474.
李成林, MIENANDI N J M, ANANE G O, 等. 棉花耐涝害的生理生化特征与分子机制研究进展[J]. 安徽农业科学, 2021, 49(4): 16-19.
GARCÍA-ROBLEDO C, BAER C S. Positive Genetic Covariance and Limited Thermal Tolerance Constrain Tropical Insect Responses to Global Warming[J]. Journal of Evolutionary Biology, 2021, 34(9): 1432-1446.
SOBERON J, PETERSON A T. Interpretation of Models of Fundamental Ecological Niches and Species' Distributional Areas[J]. Biodiversity Informatics, 2005, 2: 1-10.
BARVE N, BARVE V, JIMÉNEZ-VALVERDE A, et al. The Crucial Role of the Accessible Area in Ecological Niche Modeling and Species Distribution Modeling[J]. Ecological Modelling, 2011, 222(11): 1810-1819.
曹倩, 高庆波, 郭万军, 等. 基于MaxEnt模拟人类活动与环境因子对青藏高原特有植物祁连獐牙菜潜在分布的影响[J]. 植物科学学报, 2021, 39(1): 22-31.