徐琳琳, 张树美, 赵俊莉.基于图像的面部表情识别方法综述[J].计算机应用, 2017, 37(12):3509-3516, 3546. doi: 10.11772/j.issn.1001-9081.2017.12.3509
杨雨浓, 房鼎益, 王洪.一种基于混合深度置信模型的面部表情识别方法[J].西南大学学报(自然科学版), 2016, 38(6):142-147.
KHAN S A, HUSSAIN A, USMAN M.Reliable Facial Expression Recognition for Multi-Scale Images Using Weber Local Binary Image Based Cosine Transform Features[J].Multimedia Tools and Applications, 2018, 77(1):1133-1165. doi: 10.1007/s11042-016-4324-z
何俊, 何忠文, 蔡建峰, 等.一种新的多角度人脸表情识别方法[J].计算机应用研究, 2018, 35(1):282-286. doi: 10.3969/j.issn.1001-3695.2018.01.060
杨勇, 蔡舒博.一种基于两步降维和并行特征融合的表情识别方法[J].重庆邮电大学学报(自然科学版), 2015, 27(3):377-385.
SIDDIQI M H, ALI R, KHAN A M, et al.Human Facial Expression Recognition Using Stepwise Linear Discriminant Analysis and Hidden Conditional Random Fields[J].IEEE Transactions on Image Processing, 2015, 24(4):1386-1398. doi: 10.1109/TIP.2015.2405346
JUNG H, LEE S, YIM J, et al.Joint Fine-Tuning in Deep Neural Networks for Facial Expression Recognition[C].Santiago: IEEE International Conference on Computer Vision (ICCV), 2015.
LIU Y P, LI Y B, MA X, et al.Facial Expression Recognition with Fusion Features Extracted from Salient Facial Areas[J]. Sensors, 2017, 17(4):712-728. doi: 10.3390/s17040712
ZENG N Y, ZHANG H, SONG B Y, et al.Facial Expression Recognition Via Learning Deep Sparse Autoencoders[J].Neurocomputing, 2018, 273:643-649. doi: 10.1016/j.neucom.2017.08.043
XING Y X, LUO W.Facial Expression Recognition Using Local Gabor Features and Adaboost Classifiers[C]. Shanghai: 2016 International Conference on Progress in Informatics and Computing (PIC), 2016.
COSSETIN M J, NIEVOLA J C, KOERICH A L.Facial Expression Recognition Using a Pairwise Feature Selection and Classification Approach[C]. Vancouver: 2016 International Joint Conference on Neural Networks (IJCNN), 2016.
KAR N B, BABU K S, JENA S K.Face Expression Recognition Using Histograms of Oriented Gradients with Reduced Features[M]//Advances in Intelligent Systems and Computing.Singapore: Springer Singapore, 2016.
LIU L, FIEGUTH P, GUO Y L, et al.Local Binary Features for Texture Classification:Taxonomy and Experimental Study[J].Pattern Recognition, 2017, 62:135-160. doi: 10.1016/j.patcog.2016.08.032
杨金鑫, 杨辉华, 李灵巧, 等.结合卷积神经网络和超像素聚类的细胞图像分割方法[J].计算机应用研究, 2018, 35(5):1569-1572, 1577. doi: 10.3969/j.issn.1001-3695.2018.05.063