BEREZANSKY L, BRAVERMAN E.On Exponential Dichotomy, Bohl-Perron Type Thorems and Stability of Difference Equations[J].Journal of Mathematical Analysis and Applications, 2005, 304(2):511-530.
|
SASU A L.Exponential Dichotomy and Dichotomy Radius for Difference Equations[J].Journal of Mathematical Analysis and Applications, 2008, 344(2):906-920. doi: 10.1016/j.jmaa.2008.03.019
|
CARDOSO F, CUEVAS C.Exponential Dichotomy and Boundedness for Retarded Functional Difference Equations[J].Journal of Difference Equations and Applications, 2009, 15(3):261-290. doi: 10.1080/10236190802125330
|
ZHANG J, FAN M, ZHU H.Existence and Roughness of Exponential Dichotomies of Linear Dynamic Equations on Time Scales[J].Computers and Mathematics with Applications, 2010, 59(8):2658-2675. doi: 10.1016/j.camwa.2010.01.035
|
LIN M.A Criterion for Generalized Exponential Dichotomy and Existence of Bounded Solutions[J].Acta Mathematiea Scientia, 2003, 23(5):619-626. doi: 10.3321/j.issn:1003-3998.2003.05.015
|
JIANG L.Stronlgy Topological Linearization with Generalized Exponential Dichotomy[J].Nonlinear Analysis Theory Methods and Applications, 2007, 67(4):1102-1110. doi: 10.1016/j.na.2006.06.054
|
JIANG L.Generalized Exponential Dichotomy and Global Linearization[J].Journal of Mathematical Analysis and Applications, 2006, 315(2):474-490.
|
江良平.Palmer线性化定理的一个推广[J].应用数学, 2011, 24(1):150-157.
|
CASTA'NEDA A, ROBLEDO G.A Topological Equivalence Result for a Family of Nonlinear Difference Systems Having Generalized Exponential Dichotomy[J].Journal of Difference Equations and Applications, 2015, 22(9):1271-1291.
|
CHEN Y.Anti-Periodic Solutions for Semilinear Evolution Equations[J].Journal of Applied Mathematics and Computing, 2012, 40(9):1123-1130.
|
AIZICOVICI S, MCKIBBEN M, REICH S.Anti-Periodic Solutions to Nonmonotone Evolution Equations with Discontinuous Nonlinearities[J].Nonlinear Analysis Theory Methods and Applications, 2001, 43(2):233-251.
|
AHMAD B, ALSAEDI A.Existence of Solutions for Anti-Periodic Boundary Value Problems of Nonlinear Impulsive Functional Integro-Differential Equations of Mixed Type[J].Nonlinear Analysis Hybrid Systems, 2009, 3(4):501-509. doi: 10.1016/j.nahs.2009.03.007
|
LUO Z, SHEN J, Nieto J J.Antiperiodic Boundary Value Problem for First-Order Impulsive Ordinary Differential Equations[J].Computers and Mathematics with Applications, 2005, 49(2-3):253-261. doi: 10.1016/j.camwa.2004.08.010
|
YU Y, SHAO J, YUE G.Existence and Uniqueness of Anti-Periodic Solutions for a Kind of Rayleigh Equation with Two Deviating Arguments[J].Nonlinear Analysis Theory Methods and Applications, 2009, 71(10):4689-4695. doi: 10.1016/j.na.2009.03.032
|
文晓霞.一类反周期函数缺项插值问题的解[J].西南大学学报(自然科学版), 2018, 40(6):73-77.
|