LIEB E H. Existence and Uniqueness of the Minimizing Solution of Choquard's Nonlinear Equation [J]. Studies in Appl Math, 1977, 57:93-105. doi: 10.1002/sapm.v57.2
MOROZ V, VAN SCHAFTINGEN J. Groundstates of Nonlinear Choquard Equations:Existence, Qualitative Properties and Decay Asymptotics [J]. J Funct Anal, 2013, 265(2):153-184. doi: 10.1016/j.jfa.2013.04.007
CLAPP M, SALAZAR D. Positive and Sign Changing Solutions to a Nonlinear Choquard Equation [J]. J Math Anal Appl, 2013, 407(1):1-15. doi: 10.1016/j.jmaa.2013.04.081
KVPPER T, ZHANG Z J, XIA H Q. Multiple Positive Solutions and Bifurcation for an Equation Related to Choquard's Equation [J]. Proc Edinb Math Soc, 2003, 46(3):597-607. doi: 10.1017/S0013091502000779
LV D F. A Note on Kirchhoff-Type Equations with Hartree-Type Nonlinearities [J]. Nonlinear Anal, 2014, 99:35-48. doi: 10.1016/j.na.2013.12.022
LV D F. Existence and Concentration of Solutions for a Nonlinear Choquard Equation [J]. Mediterr J Math, 2015, 12(3):839-850. doi: 10.1007/s00009-014-0428-8
LIEB E H, LOSS M. Analysis [M]. 2th ed. Providence, RI:American Mathematical Society, 2001.
MAWHIN J, WILLEM M. Critical Point Theory and Hamiltonian Systems [M]. New York:Springer-Verlag, 1989.
WILLEN M. Minimax Theorems [M]. Boston:Birkhuser, 1996.