FLETCHER R, REEVES C M. Function Minimization by Conjugate Gradients [J]. The Computer Journal, 1964, 7(2): 149-154. doi: 10.1093/comjnl/7.2.149
POLYAK B T. The Conjugate Gradient Method in Extremal Problems [J]. Ussr Computational Mathematics and Mathematical Physics, 1969, 9(4): 94-112. doi: 10.1016/0041-5553(69)90035-4
POLAK E, RIBIÉRE G. Note Surla Convergence de Méthodes de Directions Conjuguées. [J]. Rev. franaise Informat. recherche Opérationnelle, 1968, 16(16): 35-43.
HESTENES M R, STIEFEL E L. Methods of Conjugate Gradients for Solving Linear Systems [J]. Journal of Research of the National Bureau of Standards, 1952, 49(6): 409-436. doi: 10.6028/jres.049.044
LIU Y, STOREY C. Efficient Generalized Conjugate Gradient Algorithms, Part 1: Theory [J]. Journal of Optimization Theory and Applications, 1991, 69(1): 129-137. doi: 10.1007/BF00940464
DAI Y H, YUAN Y. A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property [J]. Siam Journal on Optimization, 1999, 10(1): 177-182. doi: 10.1137/S1052623497318992
FLETCHER R.Practical Methods of Optimization, Vol Ⅰ: Unconstrained Optimization [M]. New York: Wiley and Sons, 1987.
ZOUTENDIJK G. Nonlinear Programming, Computational Methods [J]. Integer and Nonlinear Programming, 1970.
AL-BAALI M. Descent Property and Global Convergence of the Fletcher-Reeves Method with Inexact Line Search [C]. IMA Journal of Numerical Analysis. 2010: 121-124.
DAI Y H, YUAN Y. A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property [J]. Siam Journal on Optimization, 1999, 10(1): 177-182. doi: 10.1137/S1052623497318992
LIU G, HAN J, YIN H. Global Convergence of the Fletcher-Reeves Algorithm with Inexact Line Search [J]. APPL Math J China Univ, 1995, 10(1): 75-82. doi: 10.1007/BF02663897
JIANG X Z, JIAN J B. A Sufficient Descent Dai-Yuan Type Nonlinear Conjugate Gradient Method for Unconstrained Optimization Problems [J]. Nonlinear Dynamics, 2013, 72(72): 101-112.
戴彧虹.非线性共轭梯度法[M].上海:上海科学技术出版社, 2000.
ANDREI N. An Unconstrained Optimization Test Functions Collection [J]. Adv Model Optim, 2008, 10(1): 147-161.