XU J C. A Novel Two-Grid Method for Semilinear Elliptic Equations[J]. SIAM J Sci Comput, 1994, 15(1):231-237. doi: 10.1137/0915016
|
LAYTON W, LENFERINKW. A Multilevel Mesh Independence Principle for the Navier-Stokes Equations[J]. SIAM J Numer Anal, 1996, 33(1):17-30. doi: 10.1137/0733002
|
HE Y N, LI K T. Two-Level Stabilized Finite Element Method for the Steady Navier-Stokes Problem[J]. Computing, 2005, 74(4):337-351. doi: 10.1007/s00607-004-0118-7
|
LAYTON W, TOBISKA L. A Two-Level Method with Backtracking for the Navier-Stokes Equations[J]. SIAMJ Numer Anal, 1998, 35(5):2035-2054. doi: 10.1137/S003614299630230X
|
ZHENG H B, HOU Y R, SHI F, et al. A Finite Element Variational Multiscale Method for Incompressible Flows Based on Two Local Gauss Integrations[J]. J Comput Phys, 2009, 228(16):5961-5977. doi: 10.1016/j.jcp.2009.05.006
|
ZHANG Y, HE Y N. Assessment of Subgrid-Scale Models for the Incompressible Navier-Stokes Equations[J]. J Comput Appl Math, 2010, 234(2):593-604. doi: 10.1016/j.cam.2009.12.051
|
SHANG Y Q. A Two-Level Subgrid Stabilized Oseen Iterative Method for the Steady Navier-Stokes Equations[J]. J Comput Phys, 2013, 233(1):210-226.
|
SHANG Y Q. A Parallel Two-Level Finite Element Variational Multiscale Method for the Navier-Stokes Equations[J] Nonlinear Anal, 2013, 84:103-116. doi: 10.1016/j.na.2013.02.009
|
SHANG Y Q, QIN J. A Two-Parameter Stabilized Finite Element Method for Incompressible Flows[J]. NumericalMethods for PDEs, 2017, 33(2), 1-20.
|
HECHT F. New Development in Freefem++[J]. J Numer Math, 2012, 20(3-4):251-265.
|
GHIA U, GHIA K, SHIN C. High-Re Solutions for Incompressibleflow Using the Navier-Stokes Equationsand a Multigird Method[J]. J Comput Phys, 1982, 48(3):387-411. doi: 10.1016/0021-9991(82)90058-4
|